Lead loss during processing of solution-derived Pb(Zr,Ti)O3 (PZT)-based thin-films can result in the formation of a Pb-deficient, nonferroelectric fluorite phase that is detrimental to dielectric properties. It has recently been shown that this nonferroelectric fluorite phase can be converted to the desired perovskite phase by postcrystallization treatment. Here, quantitative standard-based energy-dispersive x-ray spectrometry (EDS) in a scanning transmission electron microscope (STEM) is used to study cation distribution before and after this fluorite-to-perovskite transformation. Single-phase perovskite PbZr0.53 Ti0.47O3 (PZT 53 /47) and Pb0.88 La0.12 Zr0.68 Ti0.29O3 (PLZT 12/70/30) specimens that underwent this treatment were found to be chemically indistinguishable from the perovskite present in the multiphase specimens prior to the fluorite-to-perovskite transformation. Significant Zr-Ti segregation is found in PLZT 12/70/30, but not in PZT 53/47. Slight La-segregation was seen in rapidly crystallized PLZT, but not in more slowly crystallized PLZT.
Erbium dihydride Er(H,D,T){sub 2} is a fluorite structure rare-earth dihydride useful for the storage of hydrogen isotopes in the solid state. However, thermodynamic predictions indicate that erbium oxide formation will proceed readily during processing, which may detrimentally contaminate Er(H,D,T){sub 2} films. In this work, transmission electron microscopy (TEM) techniques including energy-dispersive x-ray spectroscopy, energy-filtered TEM, selected area electron diffraction, and high-resolution TEM are used to examine the manifestation of oxygen contamination in ErD{sub 2} thin films. An oxide layer {approx}30-130 nm thick was found on top of the underlying ErD{sub 2} film, and showed a cube-on-cube epitaxial orientation to the underlying ErD{sub 2}. Electron diffraction confirmed the oxide layer to be Er{sub 2}O{sub 3}. While the majority of the film was observed to have the expected fluorite structure for ErD{sub 2}, secondary diffraction spots suggested the possibility of either nanoscale oxide inclusions or hydrogen ordering. In situ heating experiments combined with electron diffraction ruled out the possibility of hydrogen ordering, so epitaxial oxide nanoinclusions within the ErD{sub 2} matrix are hypothesized. TEM techniques were applied to examine this oxide nanoinclusion hypothesis.
Chemical solution deposition has been used to fabricate continuous ultrathin lead lanthanum zirconate titanate (PLZT) films as thin as 20 nm. Further, multilayer capacitor structures with as many as 10 dielectric layers have been fabricated from these ultrathin PLZT films by alternating spin-coated dielectric layers with sputtered platinum electrodes. Integrating a photolithographically defined wet etch step to the fabrication process enabled the production of functional multilayer stacks with capacitance values exceeding 600 nF. Such ultrathin multilayer capacitors offer tremendous advantages for further miniaturization of integrated passive components.