Publications

Results 1–25 of 30

Search results

Jump to search filters

Processing effects on microstructure in Er and ErD2 thin-films

Journal of Nuclear Materials

Parish, Chad M.; Snow, Clark S.; Kammler, Daniel K.; Brewer, Luke N.

Erbium metal thin-films have been deposited on molybdenum-on-silicon substrates and then converted to erbium dideuteride (ErD2). Here, we study the effects of deposition temperature (≈300 or 723 K) and deposition rate (1 or 20 nm/s) upon the initial Er metal microstructure and subsequent ErD2 microstructure. We find that low deposition temperature and low deposition rate lead to small Er metal grain sizes, and high deposition temperature and deposition rate led to larger Er metal grain sizes, consistent with published models of metal thin-film growth. ErD2 grain sizes are strongly influenced by the prior-metal grain size, with small metal grains leading to large ErD2 grains. A novel sample preparation technique for electron backscatter diffraction of air-sensitive ErD2 was developed, and allowed the quantitative measurement of ErD2 grain size and crystallographic texture. Finer-grained ErD2 showed a strong (1 1 1) fiber texture, whereas larger grained ErD2 had only weak texture. We hypothesize that this inverse correlation may arise from improved hydrogen diffusion kinetics in the more defective fine-grained metal structure or due to improved nucleation in the textured large-grain Er. © 2010 Elsevier B.V. All rights reserved.

More Details

Quantitative X-Ray spectrum imaging of lead lanthanum zirconate titanate PLZT thin-films

Journal of the American Ceramic Society

Parish, Chad M.; Brennecka, Geoffrey L.; Tuttle, Bruce T.; Brewer, Luke N.

The high permittivity of Pb(Zr,Ti)O3 and (Pb,La)(Zr,Ti)O 3 - PZT and PLZT, respectively - thin films and the flexibility of chemical solution deposition (CSD) make solution-derived P(L)ZT thin films extremely attractive for integrated capacitor applications. However, Pb-loss or cation segregation during processing results in degraded properties of the final film. Here, we have extended the use of multivariate statistical analysis (MSA) of energy-dispersive spectroscopy (EDS) spectrum images (SIs) in scanning transmission electron microscopy (STEM) to allow the two-dimensional (2D) quantitative analysis of cation segregation and depletion in P(L)ZT thin films. Quantified STEM-EDS SIs allow high-resolution (< ≈10 nm) quantification of these cation distributions. Surface Pb depletion is found after crystallization and is replenished by a unique post-crystallization PbO overcoat+anneal processes. Zr/Ti and La segregation are found to develop in a decidedly nonplanar fashion during crystallization, especially in PLZT 12/70/30 material, highlighting the need for 2D analysis. Quantitative 2D chemical information is essential for improved processing of homogeneous P(L)ZT films with optimal electrical properties. © 2008 Sandia Corporation. Journal compilation © 2008 The American Ceramic Society.

More Details

Quantitative chemical analysis of fluorite-to-perovskite transformations in (Pb,La) (Zr,Ti)O3 PLZT thin films

Journal of Materials Research

Parish, Chad M.; Brennecka, Geoffrey L.; Tuttle, Bruce T.; Brewer, Luke N.

Lead loss during processing of solution-derived Pb(Zr,Ti)O3 (PZT)-based thin-films can result in the formation of a Pb-deficient, nonferroelectric fluorite phase that is detrimental to dielectric properties. It has recently been shown that this nonferroelectric fluorite phase can be converted to the desired perovskite phase by postcrystallization treatment. Here, quantitative standard-based energy-dispersive x-ray spectrometry (EDS) in a scanning transmission electron microscope (STEM) is used to study cation distribution before and after this fluorite-to-perovskite transformation. Single-phase perovskite PbZr0.53 Ti0.47O3 (PZT 53 /47) and Pb0.88 La0.12 Zr0.68 Ti0.29O3 (PLZT 12/70/30) specimens that underwent this treatment were found to be chemically indistinguishable from the perovskite present in the multiphase specimens prior to the fluorite-to-perovskite transformation. Significant Zr-Ti segregation is found in PLZT 12/70/30, but not in PZT 53/47. Slight La-segregation was seen in rapidly crystallized PLZT, but not in more slowly crystallized PLZT.

More Details

The manifestation of oxygen contamination in ErD2

Proposed for publication in the International Journal of Hydrogen Energy.

Parish, Chad M.; Snow, Clark S.; Brewer, Luke N.

Erbium dihydride Er(H,D,T){sub 2} is a fluorite structure rare-earth dihydride useful for the storage of hydrogen isotopes in the solid state. However, thermodynamic predictions indicate that erbium oxide formation will proceed readily during processing, which may detrimentally contaminate Er(H,D,T){sub 2} films. In this work, transmission electron microscopy (TEM) techniques including energy-dispersive x-ray spectroscopy, energy-filtered TEM, selected area electron diffraction, and high-resolution TEM are used to examine the manifestation of oxygen contamination in ErD{sub 2} thin films. An oxide layer {approx}30-130 nm thick was found on top of the underlying ErD{sub 2} film, and showed a cube-on-cube epitaxial orientation to the underlying ErD{sub 2}. Electron diffraction confirmed the oxide layer to be Er{sub 2}O{sub 3}. While the majority of the film was observed to have the expected fluorite structure for ErD{sub 2}, secondary diffraction spots suggested the possibility of either nanoscale oxide inclusions or hydrogen ordering. In situ heating experiments combined with electron diffraction ruled out the possibility of hydrogen ordering, so epitaxial oxide nanoinclusions within the ErD{sub 2} matrix are hypothesized. TEM techniques were applied to examine this oxide nanoinclusion hypothesis.

More Details

Multilayer thin and ultrathin film capacitors fabricated by chemical solution deposition

Journal of Materials Research

Brennecka, Geoffrey L.; Parish, Chad M.; Tuttle, Bruce T.; Brewer, Luke N.

Chemical solution deposition has been used to fabricate continuous ultrathin lead lanthanum zirconate titanate (PLZT) films as thin as 20 nm. Further, multilayer capacitor structures with as many as 10 dielectric layers have been fabricated from these ultrathin PLZT films by alternating spin-coated dielectric layers with sputtered platinum electrodes. Integrating a photolithographically defined wet etch step to the fabrication process enabled the production of functional multilayer stacks with capacitance values exceeding 600 nF. Such ultrathin multilayer capacitors offer tremendous advantages for further miniaturization of integrated passive components.

More Details
Results 1–25 of 30
Results 1–25 of 30