Publications

Results 26–37 of 37

Search results

Jump to search filters

Simultaneous qualification testing of multiple components and the influence of closely spaced vibration modes

Conference Proceedings of the Society for Experimental Mechanics Series

Sisemore, Carl; Harvie, Julie M.

Vibration and shock qualification testing of components can be an expensive and time-consuming process. If the component is small, often two or more units can be mounted on a fixture and tested simultaneously to reduce test time. There is an inherent danger in simultaneously testing two or more identical components as the fundamental natural frequencies and mode shapes of the individual components will be nearly identical with some slight variation due to manufacturing variability. Testing in this manner can create a situation where closely spaced vibration modes produce unwanted interference between the two units under test. This phenomenon could result in a case where one unit is over-tested while the other is under-tested. This paper presents some experimental results from simultaneously testing pairs of components which show distinct interference between the units. Some analysis will also be presented showing how variations in the components can alter the intended test response, potentially impacting component qualification.

More Details

Energy based representations of mechanical shock for failure characterization

57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference

Babuska, Vit B.; Sisemore, Carl; Booher, Jason

The relationship between the damage potential of a series of relatively low level shocks and a single high level shock that causes severe damage is complex and depends on many factors. Shock Response Spectra are the standard for describing mechanical shock events for aerospace vehicles, but are only applicable to single shocks. Energy response spectra are applicable to multiple shock events. This paper describes the results of an initial study that sought to gain insight into how energy response spectra of low amplitude shocks relate to energy response spectra of a high amplitude shock in which the component of interest fails. The study showed that maximum energy spectra of low level shocks cannot simply be summed to estimate the energy response spectra of a high level, failure causing single shock. A power law relationship between the energy spectra of a low amplitude shock and the energy spectra of the high amplitude shock was postulated. A range of values of the exponent was empirically determined from test data and found to be consistent with the values typically used in high-cycle fatigue S-N curves.

More Details
Results 26–37 of 37
Results 26–37 of 37