Publications

Results 101–125 of 471

Search results

Jump to search filters

Development of a heterogeneous nanostructure through abnormal recrystallization of a nanotwinned Ni superalloy

Acta Materialia

Bahena, Joel A.; Heckman, Nathan M.; Barr, Christopher M.; Hattar, Khalid M.; Boyce, Brad L.; Hodge, Andrea M.

This work explores the development of a heterogeneous nanostructured material through leveraging abnormal recrystallization, which is a prominent phenomenon in coarse-grained Ni-based superalloys. Through synthesis of a sputtered Inconel 725 film with a heterogeneous distribution of stored energy and subsequent aging treatments at 730°C, a unique combination of grain sizes and morphologies was observed throughout the thickness of the material. Three distinct domains are formed in the aged microstructure, where abnormally large grains are observed in-between a nanocrystalline and a nanotwinned region. In order to investigate the transitions towards a heterogeneous structure, crystallographic orientation and elemental mapping at interval aging times up to 8 h revealed the microstructural evolution and precipitation behavior. From the experimental observations and the detailed analysis of this study, the current methodology can be utilized to further expand the design space of current heterogeneous nanostructured materials.

More Details

Investigating Porous Media for Relief Printing Using Micro-Architected Materials

Advanced Engineering Materials

Kaehr, Bryan J.; Gallegos, Michael A.; Garcia, Chelsea M.; Secor, Ethan B.; Schunk, Peter R.; White, Benjamin C.; Boyce, Brad L.

Advances in printed electronics are predicated on the integration of sophisticated printing technologies with functional materials. Although scalable manufacturing methods, such as letterpress and flexographic printing, have significant history in graphic arts printing, functional applications require sophisticated control and understanding of nanoscale transfer of fluid inks. In this paper, a versatile platform is introduced to study and engineer printing forms, exploiting a microscale additive manufacturing process to design micro-architected materials with controllable porosity and deformation. Building on this technology, controlled ink transfer for submicron functional films is demonstrated. The design freedom and high-resolution 3D control afforded by this method provide a rich framework for studying mechanics of fluid transfer for advanced manufacturing processes.

More Details

Use of a Be-dome holder for texture and strain characterization of Li metal thin films via sin(ψ) methodology

Powder Diffraction

Rodriguez, Mark A.; Harrison, Katharine L.; Goriparti, Subrahmanyam; Griego, James J.M.; Boyce, Brad L.; Perdue, Brian R.

Residual strain in electrodeposited Li films may affect safety and performance in Li metal battery anodes, so it is important to understand how to detect residual strain in electrodeposited Li and the conditions under which it arises. To explore this Li films, electrodeposited onto Cu metal substrates, were prepared under an applied pressure of either 10 or 1000 kPa and subsequently tested for the presence or absence of residual strain via sin(ψ) analysis. X-ray diffraction (XRD) analysis of Li films required preparation and examination within an inert environment; hence, a Be-dome sample holder was employed during XRD characterization. Results show that the Li film grown under 1000 kPa displayed a detectable presence of in-plane compressive strain (-0.066%), whereas the Li film grown under 10 kPa displayed no detectable in-plane strain. The underlying Cu substrate revealed an in-plane residual strain near zero. Texture analysis via pole figure determination was also performed for both Li and Cu and revealed a mild fiber texture for Li metal and a strong bi-axial texture of the Cu substrate. Experimental details concerning sample preparation, alignment, and analysis of the particularly air-sensitive Li films have also been detailed. This work shows that Li metal exhibits residual strain when electrodeposited under compressive stress and that XRD can be used to quantify that strain.

More Details

Rethinking scaling laws in the high-cycle fatigue response of nanostructured and coarse-grained metals

International Journal of Fatigue

Heckman, Nathan M.; Padilla, Henry A.; Michael, Joseph R.; Barr, Christopher M.; Clark, Blythe C.; Hattar, Khalid M.; Boyce, Brad L.

The high-cycle fatigue life of nanocrystalline and ultrafine-grained Ni-Fe was examined for five distinct grain sizes ranging from approximately 50–600 nm. The fatigue properties were strongly dependent on grain size, with the endurance limit changing by a factor of 4 over this narrow range of grain size. The dataset suggests a breakdown in fatigue improvement for the smallest grain sizes <100 nm, likely associated with a transition to grain coarsening as a dominant rate-limiting mechanism. The dataset also is used to explore fatigue prediction from monotonic tensile properties, suggesting that a characteristic flow strength is more meaningful than the widely-utilized ultimate tensile strength.

More Details

Amorphous intergranular films mitigate radiation damage in nanocrystalline Cu-Zr

Acta Materialia

Schuler, Jennifer D.; Grigorian, Charlette M.; Barr, Christopher M.; Boyce, Brad L.; Hattar, Khalid M.; Rupert, Timothy J.

Nanocrystalline metals are promising radiation tolerant materials due to their large interfacial volume fraction, but irradiation-induced grain growth can eventually degrade any improvement in radiation tolerance. Therefore, methods to limit grain growth and simultaneously improve the radiation tolerance of nanocrystalline metals are needed. Amorphous intergranular films are unique grain boundary structures that are predicted to have improved sink efficiencies due to their increased thickness and amorphous structure, while also improving grain size stability. In this study, ball milled nanocrystalline Cu-Zr alloys are heat treated to either have only ordered grain boundaries or to contain amorphous intergranular films distributed within the grain boundary network, and are then subjected to in situ transmission electron microscopy irradiation and ex situ irradiation. Differences in defect density and grain growth due to grain boundary complexion type are then investigated. When amorphous intergranular films are incorporated within the material, fewer and smaller defect clusters are observed while grain growth is also limited, leading to nanocrystalline alloys with improved radiation tolerance.

More Details

Size-dependent stochastic tensile properties in additively manufactured 316L stainless steel

Additive Manufacturing

Roach, Ashley M.; White, Benjamin C.; Garland, Anthony; Jared, Bradley H.; Carroll, J.D.; Boyce, Brad L.

Recent work in metal additive manufacturing (AM) suggests that mechanical properties may vary with feature size; however, these studies do not provide a statistically robust description of this phenomenon, nor do they provide a clear causal mechanism. Because of the huge design freedom afforded by 3D printing, AM parts typically contain a range of feature sizes, with particular interest in smaller features, so the size effect must be well understood in order to make informed design decisions. This work investigates the effect of feature size on the stochastic mechanical performance of laser powder bed fusion tensile specimens. A high-throughput tensile testing method was used to characterize the effect of specimen size on strength, elastic modulus and elongation in a statistically meaningful way. The effective yield strength, ultimate tensile strength and modulus decreased strongly with decreasing specimen size: all three properties were reduced by nearly a factor of two as feature dimensions were scaled down from 6.25 mm to 0.4 mm. Hardness and microstructural observations indicate that this size dependence was not due to an intrinsic change in material properties, but instead the effects of surface roughness on the geometry of the specimens. Finite element analysis using explicit representations of surface topography shows the critical role surface features play in creating stress concentrations that trigger deformation and subsequent fracture. The experimental and finite element results provide the tools needed to make corrections in the design process to more accurately predict the performance of AM components.

More Details

Nanoscale conditions for ductile void nucleation in copper: Vacancy condensation and the growth-limited microstructural state

Acta Materialia

Noell, Philip; Sabisch, Julian E.C.; Medlin, Douglas L.; Boyce, Brad L.

Ductile rupture or tearing usually involves structural degradation from the nucleation and growth of voids and their coalescence into cracks. Although some materials contain preexisting pores, the first step in failure is often the formation of voids. Because this step can govern both the failure strain and the fracture mechanism, it is critical to understand the mechanisms of void nucleation and the enabling microstructural configurations which give rise to nucleation. To understand the role of dislocations during void nucleation, the present study presents ex-situ cross-sectional observations of interrupted deformation experiments revealing incipient, subsurface voids in a copper material containing copper oxide inclusions. The local microstructural state was evaluated using electron backscatter diffraction (EBSD), electron channeling contrast (ECC), transmission electron microscopy (TEM), and transmission kikuchi diffraction (TKD). Surprisingly, before substantial growth and coalescence had occurred, the deformation process had resulted in the nucleation of a high density of nanoscale (≈50 nm) voids in the deeply deformed neck region where strains were on the order of 1.5. Such a proliferation of nucleation sites immediately suggests that the rupture process is limited by void growth, not nucleation. With regard to void growth, analysis of more than 20 microscale voids suggests that dislocation boundaries facilitate the growth process. The present observations call into question prior assumptions on the role of dislocation pile-ups and provide new context for the formulation of revised ductile rupture models. While the focus of this study is on damage accumulation in a highly ductile metal containing small, well-dispersed particles, these results are also applicable to understanding void nucleation in engineering alloys.

More Details

Automated high-throughput tensile testing reveals stochastic process parameter sensitivity

Materials Science and Engineering: A

Heckman, Nathan M.; Ivanoff, Thomas; Roach, Ashley M.; Jared, Bradley H.; Tung, Daniel J.; Huber, Todd; Saiz, David J.; Koepke, Joshua R.; Rodelas, Jeffrey; Madison, Jonathan D.; Salzbrenner, Bradley; Swiler, Laura P.; Jones, Reese E.; Boyce, Brad L.

The mechanical properties of additively manufactured metals tend to show high variability, due largely to the stochastic nature of defect formation during the printing process. This study seeks to understand how automated high throughput testing can be utilized to understand the variable nature of additively manufactured metals at different print conditions, and to allow for statistically meaningful analysis. This is demonstrated by analyzing how different processing parameters, including laser power, scan velocity, and scan pattern, influence the tensile behavior of additively manufactured stainless steel 316L utilizing a newly developed automated test methodology. Microstructural characterization through computed tomography and electron backscatter diffraction is used to understand some of the observed trends in mechanical behavior. Specifically, grain size and morphology are shown to depend on processing parameters and influence the observed mechanical behavior. In the current study, laser-powder bed fusion, also known as selective laser melting or direct metal laser sintering, is shown to produce 316L over a wide processing range without substantial detrimental effect on the tensile properties. Ultimate tensile strengths above 600 MPa, which are greater than that for typical wrought annealed 316L with similar grain sizes, and elongations to failure greater than 40% were observed. It is demonstrated that this process has little sensitivity to minor intentional or unintentional variations in laser velocity and power.

More Details

Listening to Radiation Damage In Situ: Passive and Active Acoustic Techniques

JOM

Dennett, Cody A.; Choens II, Robert C.; Foulk, James W.; Heckman, Nathan M.; Ingraham, Mathew D.; Robinson, David; Boyce, Brad L.; Short, Michael P.; Hattar, Khalid M.

Knowing when, why, and how materials evolve, degrade, or fail in radiation environments is pivotal to a wide range of fields from semiconductor processing to advanced nuclear reactor design. A variety of methods, including optical and electron microscopy, mechanical testing, and thermal techniques, have been used in the past to successfully monitor the microstructural and property evolution of materials exposed to extreme radiation environments.Acoustic techniques have also been used in the past for this purpose, although most methodologies have not achieved widespread adoption. However, with an increasing desire to understand microstructure and property evolution in situ, acoustic methods provide a promising pathway to uncover information not accessible to more traditional characterization techniques. This work highlights how two different classes of acoustic techniques may be used to monitor material evolution during in situ ion beam irradiation. The passive listening technique of acoustic emission is demonstrated on two model systems, quartz and palladium, and shown to be a useful tool in identifying the onset of damage events such as microcracking.An active acoustic technique in the form of transient grating spectroscopy is used to indirectly monitor the formation of small defect clusters in copper irradiated with self-ions at high temperature through the evolution of surface acoustic wave speeds.These studies together demonstrate the large potential for using acoustic techniques as in situ diagnostics. Such tools could be used to optimize ion beam processing techniques or identify modes and kinetics of materials degradation in extreme radiation environments.

More Details

Void growth by dislocation adsorption

Materials Research Letters

Sills, Ryan; Boyce, Brad L.

Here, we propose a dislocation adsorption-based mechanism for void growth in metals, wherein a void grows as dislocations from the bulk annihilate at its surface. The basic process is governed by glide and cross-slip of dislocations at the surface of a void. Using molecular dynamics simulations we show that when dislocations are present around a void, growth occurs more quickly and at much lower stresses than when the crystal is initially dislocation-free. Finally, we show that adsorption-mediated growth predicts an exponential dependence on the hydrostatic stress, consistent with the well-known Rice-Tracey equation.

More Details

Revealing inconsistencies in X-ray width methods for nanomaterials

Nanoscale

Kunka, Cody; Boyce, Brad L.; Foiles, Stephen M.; Dingreville, Remi

Since the landmark development of the Scherrer method a century ago, multiple generations of width methods for X-ray diffraction originated to non-invasively and rapidly characterize the property-controlling sizes of nanoparticles, nanowires, and nanocrystalline materials. However, the predictive power of this approach suffers from inconsistencies among numerous methods and from misinterpretations of the results. Therefore, we systematically evaluated twenty-two width methods on a representative nanomaterial subjected to thermal and mechanical loads. To bypass experimental complications and enable a 1:1 comparison between ground truths and the results of width methods, we produced virtual X-ray diffractograms from atomistic simulations. These simulations realistically captured the trends that we observed in experimental synchrotron diffraction. To comprehensively survey the width methods and to guide future investigations, we introduced a consistent, descriptive nomenclature. Alarmingly, our results demonstrated that popular width methods, especially the Williamson-Hall methods, can produce dramatically incorrect trends. We also showed that the simple Scherrer methods and the rare Energy methods can well characterize unloaded and loaded states, respectively. Overall, this work improved the utility of X-ray diffraction in experimentally evaluating a variety of nanomaterials by guiding the selection and interpretation of width methods.

More Details

Collaborative ductile rupture mechanisms of high-purity copper identified by in situ X-ray computed tomography

Acta Materialia

Croom, Brendan P.; Jin, Helena; Noell, Philip; Boyce, Brad L.; Li, Xiaodong

The competition between ductile rupture mechanisms in high-purity Cu and other metals is sensitive to the material composition and loading conditions, and subtle changes in the metal purity can lead to failure either by void coalescence or Orowan Alternating Slip (OAS). In situ X-ray computed tomography tensile tests on 99.999% purity Cu wires have revealed that the rupture process involves a sequence of damage events including shear localization; growth of micron-sized voids; and coalescence of microvoids into a central cavity prior to the catastrophic enlargement of the coalesced void via OAS. This analysis has shown that failure occurs in a collaborative rather than strictly competitive manner. In particular, strain localization along the shear band enhanced void nucleation and drove the primary coalescence event, and the size of the resulting cavity and consumption of voids ensured a transition to the OAS mechanism rather than continued void coalescence. Additionally, the tomograms identified examples of void coalescence and OAS growth of individual voids at all stages of the failure process, suggesting that the transition between the different mechanisms was sensitive to local damage features, and could be swayed by collaboration with other damage mechanisms. The competition between the different damage mechanisms is discussed in context of the material composition, the local damage history, and collaboration between the mechanisms.

More Details

Predicting strength distributions of MEMS structures using flaw size and spatial density

Microsystems and Nanoengineering

Foulk, James W.; Delrio, F.W.; Boyce, Brad L.

The populations of flaws in individual layers of microelectromechanical systems (MEMS) structures are determined and verified using a combination of specialized specimen geometry, recent probabilistic analysis, and topographic mapping. Strength distributions of notched and tensile bar specimens are analyzed assuming a single flaw population set by fabrication and common to both specimen geometries. Both the average spatial density of flaws and the flaw size distribution are determined and used to generate quantitative visualizations of specimens. Scanning probe-based topographic measurements are used to verify the flaw spacings determined from strength tests and support the idea that grain boundary grooves on sidewalls control MEMS failure. The findings here suggest that strength controlling features in MEMS devices increase in separation, i.e., become less spatially dense, and decrease in size, i.e., become less potent flaws, as processing proceeds up through the layer stack. The method demonstrated for flaw population determination is directly applicable to strength prediction for MEMS reliability and design.

More Details
Results 101–125 of 471
Results 101–125 of 471