Sandia National Laboratories has tested and evaluated two Guralp Affinity digitizers. The Affinity digitizers are intended to record sensor output for seismic and infrasound monitoring applications. The purpose of this digitizer evaluation is to measure the performance characteristics in such areas as power consumption, input impedance, sensitivity, full scale, self- noise, dynamic range, system noise, response, passband, and timing. The Affinity digitizers are being evaluated for potential use in the International Monitoring System (IMS) of the Comprehensive Nuclear Test-Ban-Treaty Organization (CTBTO).
The Seismo - Hydroacoustic Data Acquisition System (SHDAS) is undergoing evaluation in preparation for its engineering, development, and deployment by the U.S Navy as an ocean bottom seismic monitoring system. At the current stage of development, the production seismometers are being evaluated to confirm their performance prior to packaging and assembly for deployment. The testing of the seismometers is being conducted at the Pinon Flats Observatory (PFO) , supervised by Sandia National Laboratories, U.S Navy, and RP Kromer Consulting. SNL will conduct evaluation of the collected seismometer data and comment on the performance of the seismometers.
Sandia National Laboratories has tested and evaluated three seismometers, the Trillium 120PH, manufactured by Nanometrics. These seismometers measure broadband ground velocity using a UVW configuration with feedback control in a mechanically levelled borehole package. The purpose of the seismometer evaluation was to determine a measured sensitivity, response, self- noise, dynamic range, and self-calibration ability. The Nanometrics Trillium 120PH seismometers are being evaluated for the U.S. Air Force as part of their Next Generation Qualification effort.
Sandia National Laboratories has tested and evaluated two seismometers, the STS-5A, manufactured by Kinemetrics. These seismometers measure three axes of broadband ground velocity using a UVW configuration with feedback control in a mechanically levelled borehole package. The purpose of the seismometer evaluation was to determine a measured sensitivity, response, self-noise, dynamic range, and self-calibration ability. The Kinemetrics STS-5A seismometers are being evaluated for the U.S. Air Force as part of their Next Generation Qualification effort.
Sandia National Laboratories has tested and evaluated a new preamplifier, the Guralp Preamplifier for GS13, manufactured by Guralp. These preamplifiers are used to interface between Guralp digitizers and Geotech GS13 Seismometers. The purpose of the preamplifier evaluation was to measure the performance characteristics in such areas as power consumption, input impedance, sensitivity, full scale, self-noise, dynamic range, system noise, response, passband, and timing. The Guralp GS13 Preamplifiers are being evaluated for potential use in the International Monitoring System (IMS) of the Comprehensive Nuclear Test-Ban-Treaty Organization (CTBTO).
Sandia National Laboratories has tested and evaluated an updated SMAD digitizer, developed by the French Alternative Energies and Atomic Energy Commission (CEA). The SMAD digitizers are intended to record sensor output for seismic and infrasound monitoring applications. The purpose of this digitizer evaluation is to measure the performance characteristics in such areas as power consumption, input impedance, sensitivity, full scale, self-noise, dynamic range, system noise, response, passband, and timing. The SMAD digitizers have been updated since their last evaluation by Sandia to improve their performance when recording at a sample rate of 20 Hz for infrasound applications and 100 Hz for hydro-acoustic seismic stations. This evaluation focuses primarily on the 20 Hz and 100 Hz sample rates. The SMAD digitizers are being evaluated for potential use in the International Monitoring System (IMS) of the Comprehensive Nuclear Test- Ban-Treaty Organization (CTBTO).
Sandia National Laboratories has tested and evaluated the new SMAD digitizer (revision A) design by CEA, France. The digitizer was tested at the acquisition rate of 50 Hz and gain factors of 1x, 2x, 4x, and 8x. The purpose of this digitizer evaluation was to perform seismic system noise analysis with estimates of system band-width dynamic range for an STS2 application and to determine the following device specifications: bit-weight, input terminated noise with a 2x50 Ohms load, bandwidth limited dynamic range, power consumption, common-mode rejection, cross-talk, analog bandwidth, relative transfer function, total harmonic distortion, time-tag accuracy, time-tag statistics, and time-tag drift. The test results included in this report were in response to static and to tonal-dynamic input signals. Wherever possible test methodologies used were based on IEEE Standards 1057 for Digitizing Waveform Recorders and 1241 for Analog to Digital Converters.
The Seismo-Hydroacoustic Data Acquisition System (SHDAS) is undergoing evaluation in preparation for its engineering, development, and deployment by the U.S Navy as an ocean bottom seismic monitoring system. At the current stage of development, the production digitizers are being evaluated to confirm their performance prior to packaging and assembly for deployment. The testing of the digitizers is being conducted at Delta Group Electronics, the digitizer fabricator, in San Diego, California, performed by Sandia National Laboratories with the assistance of Leidos and Delta Group Electronics.
Sandia National Laboratories has tested and evaluated two infrasound sensors, the model VDP100 and VDP250, built in-house at the USGS Cascades Volcano Observatory. The purpose of the infrasound sensor evaluation was to determine a measured sensitivity, self-noise, dynamic range and nominal transfer function. Notable features of the VDP sensors include novel and durable construction and compact size.
Sandia National Laboratories has tested and evaluated an infrasound sensor, the Model 60 manufactured by Chaparral Physics, a Division of Geophysical Institute of the University of Alaska, Fairbanks. The purpose of the infrasound sensor evaluation was to determine a measured sensitivity, transfer function, power, self-noise, dynamic range, and seismic sensitivity. The Model 60 infrasound sensor is a new sensor developed by Chaparral Physics intended to be a small, rugged sensor used in more flexible application conditions.
The Seismo-Hydroacoustic Data Acquisition System (SHDAS) is undergoing evaluation in preparation for its engineering, development, and deployment by the U.S Navy as an ocean bottom seismic monitoring system. A prototype of the Underwater Platform has been deployed at the Pinedale Seismic Research Facility (PSRF) in Wyoming to determine how well it couples to the ground for the purpose of measuring ground motion. The evaluation was conducted during the summer of 2014 by the U.S. Navy, U.S. Air Force, RP Kromer Consulting, and other contractors. Sandia National Laboratories (SNL) was asked to analyze and interpret the collected data so as to comment on coupling of the Underwater Platform to the ground.
NetMOD ( Net work M onitoring for O ptimal D etection) is a Java-based software package for conducting simulation of seismic, hydracoustic, and infrasonic networks. Specifically, NetMOD simulates the detection capabilities of monitoring networks. Network simulations have long been used to study network resilience to station outages and to determine where additional stations are needed to reduce monitoring thresholds. NetMOD makes use of geophysical models to determine the source characteristics, signal attenuation along the path between the source and station, and the performance and noise properties of the station. These geophysical models are combined to simulate the relative amplitudes of signal and noise that are observed at each of the stations. From these signal-to-noise ratios (SNR), the probability of detection can be computed given a detection threshold. This manual describes how to configure and operate NetMOD to perform detection simulations. In addition, NetMOD is distributed with simulation datasets for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) International Monitoring System (IMS) seismic, hydroacoustic, and infrasonic networks for the purpose of demonstrating NetMOD's capabilities and providing user training. The tutorial sections of this manual use this dataset when describing how to perform the steps involved when running a simulation. ACKNOWLEDGEMENTS We would like to thank the reviewers of this document for their contributions.
Sandia National Laboratories has tested and evaluated an infrasound sensor, the 5113/A manufactured by Hyperion. These infrasound sensors measure pressure output by a methodology developed by the University of Mississippi. The purpose of the infrasound sensor evaluation was to determine a measured sensitivity, transfer function, power, self-noise, and dynamic range. The 5113/A infrasound sensor is a new revision of the 5000 series intended to meet the infrasound application requirements for use in the International Monitoring System (IMS) of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO).
NetMOD ( Net work M onitoring for O ptimal D etection) is a Java-based software package for conducting simulation of seismic, hydroacoustic and infrasonic networks. Network simulations have long been used to study network resilience to station outages and to determine where additional stations are needed to reduce monitoring thresholds. NetMOD makes use of geophysical models to determine the source characteristics, signal attenuation along the path between the source and station, and the performance and noise properties of the station. These geophysical models are combined to simulate the relative amplitudes of signal and noise that are observed at each of the stations. From these signal-to-noise ratios (SNR), the probabilities of signal detection at each station and event detection across the network of stations can be computed given a detection threshold. The purpose of this document is to clearly and comprehensively present the mathematical framework used by NetMOD, the software package developed by Sandia National Laboratories to assess the monitoring capability of ground-based sensor networks. Many of the NetMOD equations used for simulations are inherited from the NetSim network capability assessment package developed in the late 1980s by SAIC (Sereno et al., 1990).
NetMOD ( Net work M onitoring for O ptimal D etection) is a Java-based software package for conducting simulation of seismic, hydroacoustic and infrasonic networks. Network simulations have long been used to study network resilience to station outages and to determine where additional stations are needed to reduce monitoring thresholds. NetMOD makes use of geophysical models to determine the source characteristics, signal attenuation along the path between the source and station, and the performance and noise properties of the station. These geophysical models are combined to simulate the relative amplitudes of signal and noise that are observed at each of the stations. From these signal-to-noise ratios (SNR), the probability of detection can be computed given a detection threshold. This document describes the parameters that are used to configure the NetMOD tool and the input and output parameters that make up the simulation definitions.
Sandia National Laboratories has tested and evaluated an infrasound sensor, the 5113/GP manufactured by Hyperion. These infrasound sensors measure pressure output by a methodology developed by the University of Mississippi. The purpose of the infrasound sensor evaluation was to determine a measured sensitivity, transfer function, power, self-noise, dynamic range, and seismic sensitivity. These sensors are being evaluated prior to deployment by the U.S. Air Force.
Sandia National Laboratories has tested and evaluated two Guralp preamplifiers for use with a GS21 seismometer application. The two preamplifiers have a gain factor of 61.39. The purpose of the preamplifier evaluation was to determine a measured gain factor, transfer function, total harmonic distortion, self-noise, application passband, dynamic range, seismometer calibration pass-through, and to comment on any issues encountered during the evaluation. The test results included in this report were in response to static, tonal, and dynamic input signals. The Guralp GS21 preamplifiers are being evaluated for potential use in the International Monitoring System (IMS) of the Comprehensive Nuclear Test-Ban-Treaty Organization (CTBTO). Test methodologies used were based on IEEE Standards 1057 for Digitizing Waveform Recorders and 1241 for Analog to Digital Converters
Sandia National Laboratories has tested and evaluated a new infrasound sensor, the MB3a, manufactured by Seismo Wave. These infrasound sensors measure pressure output by a methodology developed by researchers at the French Alternative Energies and Atomic Energy Commission (CEA) and the technology was recently licensed to Seismo Wave for production and sales. The purpose of the infrasound sensor evaluation was to determine a measured sensitivity, transfer function, power, self-noise, dynamic range, seismic sensitivity, and self- calibration ability. The MB3a infrasound sensors are being evaluated for potential use in the International Monitoring System (IMS) of the Comprehensive Nuclear Test-Ban-Treaty Organization (CTBTO).