Publications

Results 1–25 of 31

Search results

Jump to search filters

Time-resolved measurements of product formation in the low-temperature (550-675 K) oxidation of neopentane: A probe to investigate chain-branching mechanism

Physical Chemistry Chemical Physics

Eskola, Arkke J.; Antonov, Ivan O.; Sheps, Leonid; Savee, John D.; Osborn, David L.; Taatjes, Craig A.

Product formation, in particular ketohydroperoxide formation and decomposition, were investigated in time-resolved, Cl-atom initiated neopentane oxidation experiments in the temperature range 550-675 K using a photoionization time-of-flight mass spectrometer. Ionization light was provided either by Advanced Light Source tunable synchrotron radiation or ∼10.2 eV fixed energy radiation from a H2-discharge lamp. Experiments were performed both at 1-2 atm pressure using a high-pressure reactor and also at ∼9 Torr pressure employing a low-pressure reactor for comparison. Because of the highly symmetric structure of neopentane, ketohydroperoxide signal can be attributed to a 3-hydroperoxy-2,2-dimethylpropanal isomer, i.e. from a γ-ketohydroperoxide (γ-KHP). The photoionization spectra of the γ-KHP measured at low- and high pressures and varying oxygen concentrations agree well with each other, further supporting they originate from the single isomer. Measurements performed in this work also suggest that the "Korcek" mechanism may play an important role in the decomposition of 3-hydroperoxy-2,2-dimethylpropanal, especially at lower temperatures. However, at higher temperatures where γ-KHP decomposition to hydroxyl radical and oxy-radical dominates, oxidation of the oxy-radical yields a new important channel leading to acetone, carbon monoxide, and OH radical. Starting from the initial neopentyl + O2 reaction, this channel releases altogether three OH radicals. A strongly temperature-dependent reaction product is observed at m/z = 100, likely attributable to 2,2-dimethylpropanedial.

More Details

Detection and Identification of the Keto-Hydroperoxide (HOOCH2OCHO) and Other Intermediates during Low-Temperature Oxidation of Dimethyl Ether

Journal of Physical Chemistry A

Moshammer, Kai; Jasper, Ahren W.; Popolan-Vaida, Denisia M.; Lucassen, Arnas; Dievart, Pascal; Selim, Hatem; Eskola, Arkke J.; Taatjes, Craig A.; Leone, Stephen R.; Sarathy, S.M.; Ju, Yiguang; Dagaut, Philippe; Kohse-Hoinghaus, Katharina; Hansen, Nils

In this paper we report the detection and identification of the keto-hydroperoxide (hydroperoxymethyl formate, HPMF, HOOCH2OCHO) and other partially oxidized intermediate species arising from the low-temperature (540 K) oxidation of dimethyl ether (DME). These observations were made possible by coupling a jet-stirred reactor with molecular-beam sampling capabilities, operated near atmospheric pressure, to a reflectron time-of-flight mass spectrometer that employs single-photon ionization via tunable synchrotron-generated vacuum-ultraviolet radiation. On the basis of experimentally observed ionization thresholds and fragmentation appearance energies, interpreted with the aid of ab initio calculations, we have identified HPMF and its conceivable decomposition products HC(O)O(O)CH (formic acid anhydride), HC(O)OOH (performic acid), and HOC(O)OH (carbonic acid). Other intermediates that were detected and identified include HC(O)OCH3 (methyl formate), cycl-CH2-O-CH2-O- (1,3-dioxetane), CH3OOH (methyl hydroperoxide), HC(O)OH (formic acid), and H2O2 (hydrogen peroxide). We show that the theoretical characterization of multiple conformeric structures of some intermediates is required when interpreting the experimentally observed ionization thresholds, and a simple method is presented for estimating the importance of multiple conformers at the estimated temperature (∼100 K) of the present molecular beam. We also discuss possible formation pathways of the detected species: for example, supported by potential energy surface calculations, we show that performic acid may be a minor channel of the O2 + CH2OCH2OOH reaction, resulting from the decomposition of the HOOCH2OCHOOH intermediate, which predominantly leads to the HPMF.

More Details

Direct observation and kinetics of a hydroperoxyalkyl radical (QOOH)

Science

Savee, John D.; Papajak, Ewa; Rotavera, Brandon; Huang, Haifeng; Eskola, Arkke J.; Welz, Oliver; Sheps, Leonid; Taatjes, Craig A.; Zador, Judit; Osborn, David L.

Oxidation of organic compounds in combustion and in Earth's troposphere is mediated by reactive species formed by the addition of molecular oxygen (O2) to organic radicals. Among the most crucial and elusive of these intermediates are hydroperoxyalkyl radicals, often denoted "QOOH." These species and their reactions with O2 are responsible for the radical chain branching that sustains autoignition and are implicated in tropospheric autoxidation that can form low-volatility, highly oxygenated organic aerosol precursors. We report direct observation and kinetics measurements of a QOOH intermediate in the oxidation of 1,3-cycloheptadiene, a molecule that offers insight into both resonance-stabilized and nonstabilized radical intermediates. The results establish that resonance stabilization dramatically changes QOOH reactivity and, hence, that oxidation of unsaturated organics can produce exceptionally long-lived QOOH intermediates.

More Details

Note: Absolute photoionization cross-section of the vinyl radical

Journal of Chemical Physics

Savee, John D.; Lockyear, Jessica F.; Borkar, Sampada; Eskola, Arkke J.; Welz, Oliver W.; Taatjes, Craig A.; Osborn, David L.

This work measures the absolute photoionization cross-section of the vinyl radical (σvinyl(E)) between 8.1 and 11.0 eV. Two different methods were used to obtain absolute cross-section measurements: 193 nm photodissociation of methyl vinyl ketone (MVK) and 248 nm photodissociation of vinyl iodide (VI). The values of the photoionization cross-section for the vinyl radical using MVK, σvinyl(10.224 eV) = (6.1 ± 1.4) Mb and σvinyl(10.424 eV) = (8.3 ± 1.9) Mb, and using VI, σvinyl(10.013 eV) = (4.7 ± 1.1) Mb, σ vinyl(10.513 eV) = (9.0 ± 2.1) Mb, and σ vinyl(10.813 eV) = (12.1 ± 2.9) Mb, define a photoionization cross-section that is ∼1.7 times smaller than a previous determination of this value. © 2013 AIP Publishing LLC.

More Details

Synchrotron photoionization measurements of fundamental autoignition reactions: Product formation in low-temperature isobutane oxidation

Proceedings of the Combustion Institute

Eskola, Arkke J.; Welz, Oliver W.; Savee, John D.; Osborn, David L.; Taatjes, Craig A.

Product formation in laser-photolytic Cl-initiated low-temperature (550-700 K) oxidation of isobutane in a slow-flow reactor was investigated by tunable synchrotron photoionization mass spectrometry. These experiments probed the time-resolved formation of products following photolytic initiation of the oxidation, and identify isomeric species by their photoionization spectra. The relative yields of oxygenated product isomers (2,2-dimethyloxirane, methylpropanal, and 3-methyloxetane) are in reasonable concord with measurements from Walker and co-workers (J. Chem. Soc. Faraday Trans. 74 (1) (1978) 2229-2251) at higher temperature. Oxidation of isotopically labeled isobutane, (CH3)3CD, suggests that methylpropanal formation can proceed from both (CH3)2CCH2OOH and CH 3CH(CH2)CH2OOH isomers. Bimodal time behavior is observed for product formation; the initial prompt formation reflects "formally direct" channels, principally chemical activation, and the longer-timescale "delayed" component arises from dissociation of thermalized ROO and QOOH radicals. The proportion of prompt to delayed signal is smaller for the oxygenated products than for the isobutene product. This channel-specific behavior can be qualitatively understood by considering the different energetic distributions of ROO and QOOH in formally direct vs. thermal channels and the fact that the transition states involved in the formation of oxygenated products are "tighter" than that for isobutene formation. © 2012 Published by Elsevier Inc. on behalf of The Combustion Institute.

More Details

Low-temperature combustion chemistry of biofuels: Pathways in the low-temperature (550-700 K) oxidation chemistry of isobutanol and tert-butanol

Proceedings of the Combustion Institute

Savee, John D.; Eskola, Arkke J.; Sheps, Leonid; Osborn, David L.; Taatjes, Craig A.

Butanol isomers are promising next-generation biofuels. Their use in internal combustion applications, especially those relying on low-temperature autoignition, requires an understanding of their low-temperature combustion chemistry. Whereas the high-temperature oxidation chemistry of all four butanol isomers has been the subject of substantial experimental and theoretical efforts, their low-temperature oxidation chemistry remains underexplored. In this work we report an experimental study on the fundamental low-temperature oxidation chemistry of two butanol isomers, tert-butanol and isobutanol, in low-pressure (4-5.1 Torr) experiments at 550 and 700 K. We use pulsed-photolytic chlorine atom initiation to generate hydroxyalkyl radicals derived from tert-butanol and isobutanol, and probe the chemistry of these radicals in the presence of an excess of O2 by multiplexed time-resolved tunable synchrotron photoionization mass spectrometry. Isomer-resolved yields of stable products are determined, providing insight into the chemistry of the different hydroxyalkyl radicals. In isobutanol oxidation, we find that the reaction of the a-hydroxyalkyl radical with O2 is predominantly linked to chain-terminating formation of HO2. The Waddington mechanism, associated with chain-propagating formation of OH, is the main product channel in the reactions of O2 with b-hydroxyalkyl radicals derived from both tert-butanol and isobutanol. In the tert-butanol case, direct HO2 elimination is not possible in the b-hydroxyalkyl + O2 reaction because of the absence of a beta C-H bond; this channel is available in the b-hydroxyalkyl + O2 reaction for isobutanol, but we find that it is strongly suppressed. Observed evolution of the main products from 550 to 700 K can be qualitatively explained by an increasing role of hydroxyalkyl radical decomposition at 700 K. © 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

More Details
Results 1–25 of 31
Results 1–25 of 31