Time-Stepping the in E3SM nonhydrostatic atmsophere dynamic core
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Discrete and Continuous Dynamical Systems - Series B
We generalize the theory of underlying one-step methods to strictly stable general linear methods (GLMs) solving nonautonomous ordinary differential equations (ODEs) that satisfy a global Lipschitz condition. We combine this theory with the Lyapunov and Sacker-Sell spectral stability theory for one-step methods developed in [34, 35, 36] to analyze the stability of a strictly stable GLM solving a nonautonomous linear ODE. These results are applied to develop a stability diagnostic for the solution of nonautonomous linear ODEs by strictly stable GLMs.
BIT Numerical Mathematics
Approximation theory for Lyapunov and Sacker–Sell spectra based upon QR techniques is used to analyze the stability of a one-step method solving a time-dependent (nonautonomous) linear ordinary differential equation (ODE) initial value problem in terms of the local error. Integral separation is used to characterize the conditioning of stability spectra calculations. The stability of the numerical solution by a one-step method of a nonautonomous linear ODE using real-valued, scalar, nonautonomous linear test equations is justified. This analysis is used to approximate exponential growth/decay rates on finite and infinite time intervals and establish global error bounds for one-step methods approximating uniformly, exponentially stable trajectories of nonautonomous and nonlinear ODEs. A time-dependent stiffness indicator and a one-step method that switches between explicit and implicit Runge–Kutta methods based upon time-dependent stiffness are developed based upon the theoretical results.
Abstract not provided.
Abstract not provided.
Discrete and Continuous Dynamical Systems - Series B
Abstract not provided.
Abstract not provided.