Publications

Results 26–50 of 136

Search results

Jump to search filters

Simulations of the IR and Raman spectra of water confined in amorphous silica slit pores

Journal of Chemical Physics

Senanayake, Hasini S.; Greathouse, Jeffery A.; Ilgen, Anastasia G.; Thompson, Ward H.

Water in nano-scale confining environments is a key element in many biological, material, and geological systems. The structure and dynamics of the liquid can be dramatically modified under these conditions. Probing these changes can be challenging, but vibrational spectroscopy has emerged as a powerful tool for investigating their behavior. A critical, evolving component of this approachis a detailed understanding of the connection between spectroscopic features and molecular-level details. In this paper, this issue is addressed by using molecular dynamics simulations to simulate the linear infrared (IR) and Raman spectra for isotopically dilute HOD in D2O confined inhydroxylated amorphous silica slit pores. The effect of slit-pore width and hydroxyl density on thesilica surface on the vibrational spectra is also investigated. The primary effect of confinement is a blueshift in the frequency of OH groups donating a hydrogen bond to the silica surface. Thisappears as a slight shift in the total (measurable) spectra but is clearly seen in the distance-based IR and Raman spectra. Analysis indicates that these changes upon confinement are associated withtheweaker hydrogen-bond accepting properties of silica oxygens compared to water molecules.

More Details

Interplay of physically different properties leading to challenges in separating lanthanide cations - anab initiomolecular dynamics and experimental study

Physical Chemistry Chemical Physics

Leung, Kevin L.; Ilgen, Anastasia G.

Lanthanide elements have well-documented similarities in their chemical behavior, which make the valuable trivalent lanthanide cations (Ln3+) particularly difficult to separate from each other in water. In this work, we applyab initiomolecular dynamics simulations to compare the free energies (ΔGads) associated with the adsorption of lanthanide cations to silica surfaces at a pH condition where SiO−groups are present. The predicted ΔGadsfor lutetium (Lu3+) and europium (Eu3+) are similar within statistical uncertainties; this is in qualitative agreement with our batch adsorption measurements on silica. This finding is remarkable because the two cations exhibit hydration free energies (ΔGhyd) that differ by >2 eV, different hydration numbers, and different hydrolysis behavior far from silica surfaces. We observe that the similarity in Lu3+and Eu3+ΔGadsis the result of a delicate cancellation between the difference in Eu3+and Lu3+hydration (ΔGhyd), and their difference in binding energies to silica. We propose that disrupting this cancellation at the two end points, either for adsorbed or completely desorbed lanthanides (e.g.,viananoconfinment or mixed solvents), will lead to effective Ln3+separation.

More Details

Impacts on mechanical strength of chemical reactions induced by hydrous supercritical CO2 in Boise Sandstone

International Journal of Greenhouse Gas Control

Choens, Robert C.; Ilgen, Anastasia G.; Espinoza, Nicolas; Aman, Michael; Wilson, Jennifer E.; Dewers, Thomas D.

Geomechanics experiments were used to assess mechanical alteration of Boise Sandstone promoted by reactions with supercritical carbon dioxide (scCO2) and water vapor. During geologic carbon storage, scCO2 is injected into subsurface reservoirs, forming buoyant plumes. At brine-plume interfaces, scCO2 can dissolve into native brines, and water from brines can partition into scCO2, forming hydrous scCO2. This study investigates the effect of hydrous scCO2 on the strength of Boise Sandstone. Samples are first exposed to recirculating hydrous scCO2 for 24 h at 70 °C and 13.8 MPa scCO2 pressure. Samples are reacted with scCO2 with added water contents up to 500 mL. After scCO2 exposure, samples are deformed at room temperature under confining pressures of 3.4, 6.9, and 10.3 MPa. The results demonstrate that hydrous scCO2 induces chemical reactions in Boise Sandstone, with ions migrating from the solid into the hydrous scCO2 phase. At the longer time-scales, these reactions could lead to mechanical weakening in the samples; however, on the scale of our experiments, the strength changes are within sample variability. Because the solubility of water in scCO2 is extremely low (0.008 mol H2O per 1 mol CO2), the mineral dissolution of Boise Sandstone was under 0.002 wt.%. Additionally, mineral grains and pore throats in Boise Sandstone are cemented with quartz, which is not susceptible to dissolution at these conditions. Our results indicate that humidity in scCO2 plumes is unlikely to sustain chemical reactions and induce long term strength changes in quartz cemented sandstones due to resistant mineralogies and low water solubility.

More Details

SNL Contribution: Consequence Analysis for Moisture Remaining in Dry Storage Canisters After Drying

Bryan, Charles R.; Durbin, S.G.; Lindgren, Eric R.; Ilgen, Anastasia G.; Montoya, Timothy M.; Dewers, Thomas D.; Fascitelli, Dominic G.

This report discusses several possible sources of water that could persist in SNF dry storage canisters through the drying cycle. In some cases, the water is trapped in occluded geometries in the cask such as dashpots or damaged fuel. Persistence of water or ice in such locations seems unlikely, given the high heat load of the canistered fuel; this is especially true in the case of vacuum drying, where a strong driver exists to remove water vapor from the headspace of such occluded geometries. Water retention in Boral® core material is a known problem, that has in the past resulted in the need for much extended drying times. Since the shift to slightly higher porosity "blister resistant" Boral®, water drainage appears to be less of a problem. However, high surface areas for the Boral® core material will provide a trap for significant amounts of adsorbed water, at least some of which is certain to survive the drying process. Moreover, if corrosion within the cores produces hydrous aluminum corrosion products, these may also survive.

More Details

Chemical controls on the propagation rate of fracture in calcite

Scientific Reports

Ilgen, Anastasia G.; Mook, W.M.; Tigges, A.B.; Artyushkova, K.

Calcite (CaCO3) is one of the most abundant minerals in the Earth’s crust, and it is susceptible to subcritical chemically-driven fracturing. Understanding chemical processes at individual fracture tips, and how they control the development of fractures and fracture networks in the subsurface, is critical for carbon and nuclear waste storage, resource extraction, and predicting earthquakes. Chemical processes controlling subcritical fracture in calcite are poorly understood. We demonstrate a novel approach to quantify the coupled chemical-mechanical effects on subcritical fracture. The calcite surface was indented using a Vickers-geometry indenter tip, which resulted in repeatable micron-scale fractures propagating from the indent. Individual indented samples were submerged in an array of aqueous fluids and an optical microscope was used to track the fracture growth in situ. The fracture propagation rate varied from 1.6 × 10−8 m s−1 to 2.4 × 10−10 m s−1. The rate depended on the type of aqueous ligand present, and did not correlate with the measured dissolution rate of calcite or trends in zeta-potential. We postulate that chemical complexation at the fracture tip in calcite controls the growth of subcritical fracture. Previous studies indirectly pointed to the zeta-potential being the most critical factor, while our work indicates that variation in the zeta-potential has a secondary effect.

More Details
Results 26–50 of 136
Results 26–50 of 136