Molecular Simulation of the Multicomponent Interaction in Shale Nanopores
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Scientific Reports
Calcite (CaCO3) is one of the most abundant minerals in the Earth’s crust, and it is susceptible to subcritical chemically-driven fracturing. Understanding chemical processes at individual fracture tips, and how they control the development of fractures and fracture networks in the subsurface, is critical for carbon and nuclear waste storage, resource extraction, and predicting earthquakes. Chemical processes controlling subcritical fracture in calcite are poorly understood. We demonstrate a novel approach to quantify the coupled chemical-mechanical effects on subcritical fracture. The calcite surface was indented using a Vickers-geometry indenter tip, which resulted in repeatable micron-scale fractures propagating from the indent. Individual indented samples were submerged in an array of aqueous fluids and an optical microscope was used to track the fracture growth in situ. The fracture propagation rate varied from 1.6 × 10−8 m s−1 to 2.4 × 10−10 m s−1. The rate depended on the type of aqueous ligand present, and did not correlate with the measured dissolution rate of calcite or trends in zeta-potential. We postulate that chemical complexation at the fracture tip in calcite controls the growth of subcritical fracture. Previous studies indirectly pointed to the zeta-potential being the most critical factor, while our work indicates that variation in the zeta-potential has a secondary effect.
Nanoscale
We report a fluid flow in a nanochannel highly depends on the wettability of the channel surface to the fluid. The permeability of the nanochannel is usually very low, largely due to the adhesion of fluid at the solid interfaces. Using molecular dynamics (MD) simulations, we demonstrate that the flow of water in a nanochannel with rough hydrophilic surfaces can be significantly enhanced by the presence of a thin layer of supercritical carbon dioxide (scCO2) at the water–solid interfaces. The thin scCO2 layer acts like an atomistic lubricant that transforms a hydrophilic interface into a super-hydrophobic one and triggers a transition from a stick- to- a slip boundary condition for a nanoscale flow. Here, this work provides an atomistic insight into multicomponent interactions in nanochannels and illustrates that such interactions can be manipulated, if needed, to increase the throughput and energy efficiency of nanofluidic systems.
Abstract not provided.
Abstract not provided.
Journal of Physical Chemistry Letters
The adsorption equilibrium constants of monovalent and divalent cations to material surfaces in aqueous media are central to many technological, natural, and geochemical processes. Cation adsorption-desorption is often proposed to occur in concert with proton transfer on hydroxyl-covered mineral surfaces, but to date this cooperative effect has been inferred indirectly. This work applies density functional theory-based molecular dynamics simulations of explicit liquid water/mineral interfaces to calculate metal ion desorption free energies. Monodentate adsorption of Na+, Mg2+, and Cu2+ on partially deprotonated silica surfaces are considered. Na+ is predicted to be unbound, while Cu2+ exhibits binding free energies to surface SiO- groups that are larger than those of Mg2+. The predicted trends agree with competitive adsorption measurements on fumed silica surfaces. As desorption proceeds, Cu2+ dissociates one of the H2O molecules in its first solvation shell, turning into Cu2+(OH-)(H2O)3, while Mg remains Mg2+(H2O)6. The protonation state of the SiO- group at the initial binding site does not vary monotonically with cation desorption.
In recent years, seismicity rates in the US have dramatically risen due to increased activity in onshore oil and gas production. This project attempts to tie observations about induced seismicity to dehydration reactions in laumontite, a common mineral found in fault gouge in crystalline basement formations. It is the hypothesis of this study that in addition to pressurerelated changes in the in situ stress state, the injection of wastewater pushes new fluids into crystalline fault fracture networks that are not in chemical equilibrium with the mineral assemblages, particularly laumontite in fault gouge. Experiments were conducted under hydrothermal conditions where samples of laumontite were exposed to NaC1 brines at different pH values. After exposure to different fluid chemistries for 8 weeks at 90° C, we did not observe substantial alteration of laumontite. In hydrostatic compaction experiments, all samples deformed similarly in the presence of different fluids. Pore pressure decreases were observed at the start of a 1 week hold at 85° C in a 1M NaC1 pH 3 solution, suggesting that acidic fluids might stabilize pore pressures in basement fault networks. Friction experiments on laumontite and kaolinite powders showed both materials have similar coefficients of friction. Mixtures with partial kaolinite content showed a slight decrease in the coefficient of friction, which could be sufficient to trigger slip on critically stressed basement faults.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Science of Carbon Storage in Deep Saline Formations: Process Coupling across Time and Spatial Scales
Geological carbon storage (GCS) is a promising technology for mitigating increasing concentrations of carbon dioxide (CO2) in the atmosphere. The injection of supercritical CO2into geological formations perturbs the physical and chemical state of the subsurface. The reservoir rock, as well as the overlying caprock, can experience changes in the pore fluid pressure, thermal state, chemical reactivity and stress distribution. These changes can cause mechanical deformation of the rock mass, opening/closure of preexisting fractures or/and initiation of new fractures, which can influence the integrity of the overall geological carbon storage (GCS) systems over thousands of years, required for successful carbon storage. GCS sites are inherently unified systems; however, given the scientific framework, these systems are usually divided based on the physics and temporal/spatial scales during scientific investigations. For many applications, decoupling the physics by treating the adjacent system as a boundary condition works well. Unfortunately, in the case of water and gas flow in porous media, because of the complexity of geological subsurface systems, the decoupling approach does not accurately capture the behavior of the larger relevant system. The coupled processes include various combinations of thermal (T), hydrological (H), chemical (C), mechanical (M), and biological (B) effects. These coupled processes are time- and length-scale- dependent, and can manifest in one- or two-way coupled behavior. There is an undeniable need for understanding the coupling of processes during GCS, and how these coupled phenomena can result in emergent behaviors arising from the interplay of physics and chemistry, including self - focusing of flow, porosity collapse, and changes in fracture networks. In this chapter, the first section addresses the subsurface system response to the injection of CO2, examined at field and laboratory scales, as well as in model systems, addressed from a perspective of single disciplines. The second section reviews coupling between processes during GCS observed either in the field or anticipated based on laboratory results.