Publications

6 Results

Search results

Jump to search filters

Directional Unfolded Source Term (DUST) for Compton Cameras

Mitchell, Dean J.; Horne, Steven M.; O'Brien, Sean O.; Thoreson, Gregory G.

A Directional Unfolded Source Term (DUST) algorithm was developed to enable improved spectral analysis capabilities using data collected by Compton cameras. Achieving this objective required modification of the detector response function in the Gamma Detector Response and Analysis Software (GADRAS). Experimental data that were collected in support of this work include measurements of calibration sources at a range of separation distances and cylindrical depleted uranium castings.

More Details

Directional Software Algorithms and Sensor Evaluations

O'Brien, Sean O.; Mitchell, Dean J.; Horne, Steven M.; Thoreson, Gregory G.

This report evaluates the relative performance of two directional gamma-ray spectrometers and processing algorithms that are used to construct images and spatially resolved spectra. Polaris, which was developed by H3D Inc., uses 18 pixelated CZT crystals to construct gamma-ray images in either Compton camera(CC) or coded aperture (CA) mode. The other sensor that is referenced in this report incorporates a commercial high-purity germanium based imager, called GeGI, with a coded aperture mask and processing software developed by Oak Ridge National Laboratory (ORNL). H3D and the University of Michigan provided several algorithms that can be used to process data collected by Polaris in CC mode. This evaluation compares the performance of these algorithms with a Directional Unfolded Source Term (DUST) approach developed by Sandia National Laboratories (SNL). DUST differs from the other algorithms because its primary objective is synthesis of spatially-resolved gamma ray spectra as opposed to image reconstruction.

More Details

Detector Response Function and Directional Gamma-Ray Source Calculations for Polaris

Mitchell, Dean J.; Horne, Steven M.; Thoreson, Gregory G.; Harding, Lee T.; O'Brien, Sean O.

A Directional Unfolded Source Term (DUST) method was developed to compute directionally resolved gamma-ray source terms based on back-projection spectra synthesized by Compton Cameras. Spectral features in the unprocessed spectra are indistinct primarily because the rotational angles for the conical projections cannot be determined, so probability distributions are constructed from overlapping cones. The DUST method uses an angular response function to compute a covariance matrix, which is used to process count rates in back-projection spectra by linear regression to partition the gamma-rays among several spatial regions. This method was applied to analyze data collected by the Polaris detector during an evaluation that was conducted at Oak Ridge National Laboratory (ORNL). The evaluation includes measurements of calibration sources with angular separations ranging from 1° to more than 50°. Measurements were also performed for cylindrical depleted uranium castings and a 137Cs source inside a large polyethylene sphere. The DUST algorithm was able to differentiate gamma-rays emitted by 137Cs and 60Co when the sources were separated by less than 2°, but separation greater than 10° was required to isolate the 133Ba emission from gamma-rays emitted by the other sources. The computed source terms were consistent with emission profiles from the calibration sources and from models of the spatially-extended sources. Methods for viewing radiation profiles were also evaluated because user input is required to select spatial regions of interest.

More Details
6 Results
6 Results