Publications

3 Results

Search results

Jump to search filters

Natural gas production problems : solutions, methodologies, and modeling

Lorenz, John C.; Cooper, Scott P.; Arnold, Bill W.; Herrin, James M.; Keefe, Russell G.; Olsson, William A.; Rautman, Christopher A.

Natural gas is a clean fuel that will be the most important domestic energy resource for the first half the 21st centtuy. Ensuring a stable supply is essential for our national energy security. The research we have undertaken will maximize the extractable volume of gas while minimizing the environmental impact of surface disturbances associated with drilling and production. This report describes a methodology for comprehensive evaluation and modeling of the total gas system within a basin focusing on problematic horizontal fluid flow variability. This has been accomplished through extensive use of geophysical, core (rock sample) and outcrop data to interpret and predict directional flow and production trends. Side benefits include reduced environmental impact of drilling due to reduced number of required wells for resource extraction. These results have been accomplished through a cooperative and integrated systems approach involving industry, government, academia and a multi-organizational team within Sandia National Laboratories. Industry has provided essential in-kind support to this project in the forms of extensive core data, production data, maps, seismic data, production analyses, engineering studies, plus equipment and staff for obtaining geophysical data. This approach provides innovative ideas and technologies to bring new resources to market and to reduce the overall environmental impact of drilling. More importantly, the products of this research are not be location specific but can be extended to other areas of gas production throughout the Rocky Mountain area. Thus this project is designed to solve problems associated with natural gas production at developing sites, or at old sites under redevelopment.

More Details

Controls on natural fracture variability in the Southern Raton Basin of Colorado and New Mexico

Cooper, Scott P.; Olsson, William A.; Lorenz, John C.; Herrin, James M.; Keefe, Russell G.

Natural fractures in Jurassic through Tertiary rock units of the Raton Basin locally contain conjugate shear fractures that are mechanically compatible with associated extension fractures, i.e., they have a bisector to the acute angle that is parallel to the strike of associated extension fractures, normal to the thrust front at the western margin of the basin. Both sets of fractures are therefore interpreted to have formed during Laramide-age thrusting from west to east that formed the Sangre de Cristo Mountains and subsequently the foreland Raton Basin, and that imposed strong east-west compressive stresses onto the strata filling the basin. This pattern is not universal, however. Anomalous NNE-SSW striking fractures locally dominate strata close to the thrust front, and fracture patterns are irregular in strata associated with anticlinal structures within the basin. Of special interest are strike-slip style conjugate shear fractures within Dakota Sandstone outcrops 60 miles to the east of the thrust front. Mohr-Coulomb failure diagrams are utilized to describe how these formed as well as how two distinctly different types of fractures can be formed in the same basin under the same regional tectonic setting and at the same time. The primary controls in this interpretation are simply the mechanical properties of the specific rock units and the depth of burial rather than significant changes in the applied stress.

More Details

Field tests of the surface area modulation downhole telemetry system

Keefe, Russell G.

Two field tests of the surface area modulation (SAM) downhole wireless telemetry system were performed at the DOE Rocky Mountain Oilfield Testing Center near Casper, Wyoming in November, 1995 and September, 1996. SAM telemetry involves the introduction of a gap of electrically insulating material in the tubular conductors in the well. The electrical resistance of a switch in this gap can then be modulated to alter the electrical characteristics of a circuit involving the well tubulars. These changes affect the current in the circuit, which is monitored with a surface ammeter. Downhole data are encoded and transmitted to the surface as a pattern of current oscillations. The tests successfully demonstrated the ability of the system to transmit information from depths exceeding 2,000 feet to the surface at up to 2,400 baud.

More Details
3 Results
3 Results