Paul Hommert Biography
Abstract not provided.
Abstract not provided.
Abstract not provided.
The agile manufacturing paradigm engenders many new concepts and work approaches for manufacturing operations. A technology often invoked in the concept of agility is modeling and simulation. Few would disagree that modeling and simulation holds the potential to substantially reduce the product development cycle and lead to improve product reliability and performance. Advanced engineering simulation can impact manufacturing in three areas: process design, product design, and process control. However, despite that promise, the routine utilization of modeling and simulation by industry within the design process is very limited. Advanced simulation is still used primarily in a troubleshooting mode examining design or process problems after the fact. Sandia National Laboratories has been engaged in the development of advanced engineering simulation tools for many years and more recently has begun to focus on the application of such models to manufacturing processes important for the defense industry. These efforts involve considerable interaction and cooperative research with US industry. Based upon this experience, this presentation examines the elements that are necessary for advanced engineering simulation to become an integral part of the design process.
The objective of this work is the development of numerical models of rock fragmentation by blasting that can be applied to oil shale recovery. Specifically, these models should be used to improve mining efficiency, evaluate alternative mining strategies and provide a basis for evaluating the blast design for in situ retort construction. 11 refs., 7 figs.