Publications

10 Results

Search results

Jump to search filters

MREG V1.1 : a multi-scale image registration algorithm for SAR applications

Eichel, Paul H.

MREG V1.1 is the sixth generation SAR image registration algorithm developed by the Signal Processing&Technology Department for Synthetic Aperture Radar applications. Like its predecessor algorithm REGI, it employs a powerful iterative multi-scale paradigm to achieve the competing goals of sub-pixel registration accuracy and the ability to handle large initial offsets. Since it is not model based, it allows for high fidelity tracking of spatially varying terrain-induced misregistration. Since it does not rely on image domain phase, it is equally adept at coherent and noncoherent image registration. This document provides a brief history of the registration processors developed by Dept. 5962 leading up to MREG V1.1, a full description of the signal processing steps involved in the algorithm, and a user's manual with application specific recommendations for CCD, TwoColor MultiView, and SAR stereoscopy.

More Details

IFP V4.0:a polar-reformatting image formation processor for synthetic aperture radar

Eichel, Paul H.

IFP V4.0 is the fourth generation of an extraordinarily powerful and flexible image formation processor for spotlight mode synthetic aperture radar. It has been successfully utilized in processing phase histories from numerous radars and has been instrumental in the development of many new capabilities for spotlight mode SAR. This document provides a brief history of the development of IFP, a full exposition of the signal processing steps involved, and a short user's manual for the software implementing this latest iteration.

More Details

IFSAR for the Rapid Terrain Visualization Demonstration

Burns, Bryan L.; Eichel, Paul H.; Hensley, William H.; Kim, Theodore J.

The Rapid Terrain Visualization Advanced Concept Technology Demonstration (RTV-ACTD) is designed to demonstrate the technologies and infrastructure to meet the Army requirement for rapid generation of digital topographic data to support emerging crisis or contingencies. The primary sensor for this mission is an interferometric synthetic aperture radar (IFSAR) designed at Sandia National Laboratories. This paper will outline the design of the system and its performance, and show some recent flight test results. The RTV IFSAR will meet DTED level III and IV specifications by using a multiple-baseline design and high-accuracy differential and carrier-phase GPS navigation. It includes innovative near-real-time DEM production on-board the aircraft. The system is being flown on a deHavilland DHC-7 Army aircraft.

More Details

The Direction Cosine Method of Scatterer Location Extended to Spotlight-Mode IFSAR

Eichel, Paul H.

In this paper we have shown how the direction cosine method of stripmap-mode IFSAR maybe modified for use in the spotlight-mode case. Spotlight-mode IFSAR geometry dictates a common aperture phase center, velocity vector, and baseline vector for every pixel in an image. Angle with respect to the velocity vector is the same for every pixel in a given column and can be computed from the column index, the Doppler of the motion compensation point and the Doppler column sample spacing used in image formation. With these modifications, the direction cosines and length of the line of sight vector to every scatterer in the scene may be computed directly from the raw radar measurements of range, Doppler, and interferometric phase.

More Details

Compression of Complex-Valued SAR Imagery

IEEE Transactions on Geoscience and Remote Sensing

Eichel, Paul H.

Synthetic Aperture Radars are coherent imaging systems that produce complex-valued images of the ground. Because modern systems can generate large amounts of data, there is substantial interest in applying image compression techniques to these products. In this paper, we examine the properties of complex-valued SAR images relevant to the task of data compression. We advocate the use of transform-based compression methods but employ radically different quantization strategies than those commonly used for incoherent optical images. The theory, methodology, and examples are presented.

More Details

The phase gradient autofocus algorithm: An optimal estimator of the phase derivative

Eichel, Paul H.

The phase gradient algorithm represents a powerful new signal processing technique with applications to aperture synthesis imaging. These include, for example, synthetic aperture radar phase correction and stellar image reconstruction. The algorithm combines redundant information present in the data to arrive at an estimate of the phase derivative. In this report, we show that the estimator is in fact a linear, minimum variance estimator of the phase derivative. 7 refs.

More Details
10 Results
10 Results