Evaluation of aluminum surface treatments for epoxy bonding applications using Mode I fracture testing
Abstract not provided.
Abstract not provided.
American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP
Polymeric materials are commonplace in the natural gas infrastructure as distribution pipes, coatings, seals, and gaskets. Under the auspices of the U.S. Department of Energy HyBlend program, one of the means to reduce greenhouse gas emissions is with replacing natural gas, either partially or completely, with hydrogen. This approach makes it imperative that we conduct near-term and long-term materials compatibility research in these relevant environments. Insights into the effects of hydrogen and hydrogen gas blends on polymer integrity can be gained through both ex-situ and in-situ analytical methods. Our work represented here highlights a study of the behavior of pipeline polyethylene (PE) materials, including HDPE (Dow 2490 and GDB50) and MDPE (Ineos and legacy Dupont Aldyl A), when exposed to hydrogen by means of in-situ X-ray scattering and ex-situ Raman spectroscopy techniques. These methods complement each other in analyzing polymer microstructure. Data collected revealed that the aforementioned polymers did not show significant changes in crystallinity or morphology under the exposure conditions tested. These studies help establish techniques to study real-time effects of hydrogen gas on polymer structure and chemistry, which is directly related to pipeline mechanical strength and longevity of service.
Additive manufacturing (AM) is a relatively new technological advancement that allows for rapid prototyping, development of intricate shapes, and reduction in manufacturing time. The materials of interest for this project are Ultem 1010, ABS M30, FDM Nylon 12, PC, and PPSF. However, little is known regarding the aging behavior of these AM materials. The limited aging study outlined herein was designed to compare the chemical, physical, and mechanical properties of AM parts as they experience accelerated aging at 70 °C for a total of 24 weeks. In general, ABS M30 stood out as it appeared to undergo chemical and physical changes leading to increase in density and an overall more brittle material, making this commonly used material not attractive for long-term use.
The sCO2 system located in 916/160A, Sandia National Laboratories, CA, was constructed in 2014, for testing of materials in the presence of supercritical carbon dioxide (sCO2) at high pressures (up to 3500 psi) and temperatures (up to 650°C). The basic design of the system consists of a thermally insulated IN625 autoclave, a high-pressure supercritical CO2 compressor, autoclave heaters, temperature controllers, gas manifold, and temperature and pressure diagnostics. This system was modified in 2016 (sCO2 compressor was removed) to enable corrosion studies with metal alloys in gaseous CO2 at lower pressure (up to 300 psi) at 500°C. The capability was not used much afterwards until 2020, when preliminary tests using this capability (again without the supercritical CO2 compressor) involved the exposure of fatigue and tensile specimens of HN 230 and 800H alloys to CO2 gas for 168 hours in gaseous CO2. Using this capability, we finished experiments with low pressure (450 psi/ 3 MPa), high temperature (650°C) exposure of fatigue and tensile specimens of HN 230 and 800H alloys to CO2 gas for 168 hours. The data from these experiments will be compared to that gathered from experiments performed in 2020 using the tube furnace and presented in a future report. It is to be noted that the tube furnace experiments ran 500-1500 hours, unlike the 168 hours of exposure in the recent experiment. This can help validate the use of the sCO2 autoclave for both CO2 and sCO2 experiments.
Abstract not provided.
Polymers such as PTFE (polytetrafluorethylene or Teflon), EPDM (ethylene propylene diene monomer) rubber, FKM fluoroelastomer (Viton), Nylon 11, Nitrile butadiene (NBR) rubber, hydrogenated nitrile rubber (HNBR) and perfluoroelastomers (FF_202) are commonly employed in super critical CO2 (sCO2) energy conversion systems. O-rings and gaskets made from these polymers face stringent performance conditions such as elevated temperatures, high pressures, pollutants, and corrosive humid environments. In FY 2019, we conducted experiments at high temperatures (100°C and 120°C) under isobaric conditions (20 MPa). Findings showed that elevated temperatures accelerated degradation of polymers in sCO2, and that certain polymer microstructures are more susceptible to degradation over others. In FY 2020, the focus was to understand the effect of sCO2 on polymers at low (10 MPa) and high pressures (40 MPa) under isothermal conditions (100°C). It was clear that the same selectivity was observed in these experiments wherein certain polymeric functionalities showed more propensity to failure over others. Fast diffusion, supported by higher pressures and long exposure times (1000 hours) at the test temperature, caused increased damage in sCO2 environments to even the most robust polymers. We also looked at polymers under compression in sCO2 at 100°C and 20 MPa pressure to imitate actual sealing performance required of these materials in sCO2 systems. Compression worsened the physical damage that resulted from chemical attack of the polymers under these test conditions. In FY 2021, the effect of cycling temperature (from 50°C to 150°C to 50°C) for polymers under a steady sCO2 pressure of 20 MPa was studied. The aim was to understand the influence of cycling temperatures of sCO2 for typical polymers under isobaric (20 MPa) conditions. Thermoplastic polymers (Nylon, and PTFE) and elastomers (EPDM, Viton, Buna N, Neoprene, FF202, and HNBR) were subjected to 20 MPa sCO2 pressure for 50 cycles and 100 cycles in separate experiments. Samples were extracted for ex-situ characterization at 50 cycles and upon the completion of 100 cycles. Each cycle constituted of 175 minutes of cycling from 50°C to 150°C. The polymer samples were examined for physical and chemical changes by Dynamic Mechanical and Thermal Analysis (DMTA), Fourier Transform Infrared (FTIR) spectroscopy, and compression set. Density and mass changes immediately after removal from test were measured for degree of swell comparisons. Optical microscopy techniques and micro computer tomography (micro CT) images were collected on select specimens. Evaluations conducted showed that exposures to super-critical CO2 environments resulted in combinations of physical and/or chemical changes. For each polymer, the dominance of cycling temperatures under sCO2 pressures, were evaluated. Attempts were made to qualitatively link the permanent sCO2 effects to polymer micro- structure, free volume, backbone substitutions, presence of polar groups, and degree of crystallinity differences. This study has established that soft polymeric materials are conducive to failure in sCO2 through mechanisms of failure that are dependent on polymer microstructure and chemistry. Polar pendant groups, large atom substitutions on the backbone are some of the factors that are influential structural factors.
Dispensers are the top cause of maintenance events and down-time at hydrogen fueling stations. In an effort to help characterize and enable improvements in dispenser reliability, an extensive accelerated lifetime testing set-up was designed and built at NREL involving components typically part of dispensing operations at fueling stations. Device Under Test (DUTs) included different components such as normally open valves, normally closed valves, fueling nozzles, breakaways devices and filters. Conditions of testing included pressures, and flow rates similar to light duty fuel cell electric vehicles fueling at -40°C, and -20°C for thousands of cycles in hydrogen. Tested components (failed and non-failed) were disassembled at SNL and polymeric O-rings were carefully retrieved and cataloged for chemical and physical characterization. Data collected was compared to similar O-rings from unexposed or non-tested components for hydrogen effects, and failure modes. Degradation analyses, based on select polymer chemistries common across all component types, their location within components, visual assessment of damage coupled with strong hydrogen effects from chemical characterization, was completed and presented to NREL and DOE. Overall, the failure rate amongst the components was not as high as expected for the test conditions. Among the component types tested, breakaways were the most susceptible to damage under these test conditions, with fueling nozzles a close second. The proper combination of selection of the right polymer and optimum component design was found to make a strong difference in component reliability under severe dispenser operating conditions. Physical degradation of polymers, rather than chemical changes due to low temperature hydrogen exposure, is more prevalent as failure mode for these test conditions. The nature and the extent of the degradation was much less at -20°C as compared to -40°C. The damage and failure rates were higher at lower temperatures than at higher test temperatures. As expected, increasing the number of cycles at the lowest test temperature (-40°C) increased damage. This indicates that cycling at the low temperature of -40°C required by SAE J2601 can reduce component life in fuel dispensing operations
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Polymers such as PTFE (polytetrafluorethylene or Teflon), PEEK (polyetheretherketone), EPDM (ethylene propylene cliene monomer) rubber, Viton, EPR (ethylene propylene rubber), Nylon, Nitrile rubber, and perfluoroelastomers are commonly employed in super critical CO2 (sCO2) energy conversion systems. O-rings and gaskets made from these polymers face stringent performance conditions such as elevated temperatures, high pressures, pollutants and corrosive humid environments. Critical knowledge gaps about polymer degradation from sCO2 exposure need to be addressed. To understand these effects, we have studied nine commonly used polymers subjected to elevated temperatures under isobaric conditions of sCO2 pressure. The polymers (PEEK, Nylon, PTFE, EPDM, Nitrile rubber, EPR, Neoprene, perfluoroelastomer FF 202 and Viton) were exposed for 1000 hours at 100°C to 25 MPa sCO2 pressure in an autoclave. In a second study, elastomers perfluoroelastomer (FF202) and EPDM were exposed to 25 MPa sCO2 for 1000 hours at 150°C. Samples were extracted for ex-situ characterization at t = 200 hours and then at the completion of the test at t=1000 hours. The polymer samples were examined for physical and chemical changes by Dynamic Mechanical and Thermal Analysis (DMTA), Fourier Transform Infrared (FTIR) spectroscopy, and compression set. Density and mass changes immediately after removal from test and 48 hours later, and optical microscopy techniques were also used. Microcomputer tomography (micro CI) data was generated on select specimens. Super-critical CO2 effects have been identified as either physical or chemical effects. For each polymer, the dominance of one type of effect over the other was evaluated. Attempts were also made to qualitatively link sCO2 effects such as lowering or increase in glass transition temperatures, storage modulus changes, mass and compression set changes, chemical changes seen in FTIR analyses and blister and void formation seen post-exposure to polymer microstructure-related mechanisms such as plasticization of the polymer matrix, escape of volatiles from the polymer during depressurization, and filler and plasticizer effects on microstructure with rapid depressurization rates.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The purpose of this memo is to highlight the findings of an extensive literature survey and interviews with experts on the behavior of polymers in super-critical CO2 energy conversion systems that demonstrate foremost that there are critical knowledge gaps in this area that need to be addressed to improve design, reliability and lifetimes of system components. There are two brief discussions presented here: 1. SCO2 effects in polymers and associated mechanisms of failure, and 2. Summary of knowledge gaps identified in polymer/SCO2 interactions and science-based R&D to address the same.
Abstract not provided.
Abstract not provided.