Publications

3 Results

Search results

Jump to search filters

Homocoupling reactions of azoles and their applications in coordination chemistry

Molecules

Taylor, Mercedes T.; Mogensen, Steffen B.; Lee, Ji W.

Pyrazole, a member of the structural class of azoles, exhibits molecular properties of interest in pharmaceuticals and materials chemistry, owing to the two adjacent nitrogen atoms in the five-membered ring system. The weakly basic nitrogen atoms of deprotonated pyrazoles have been applied in coordination chemistry, particularly to access coordination polymers and metal-organic frameworks, and homocoupling reactions can in principle provide facile access to bipyrazole ligands. In this context, we summarize recent advances in homocoupling reactions of pyrazoles and other types of azoles (imidazoles, triazoles and tetrazoles) to highlight the utility of homocoupling reactions in synthesizing symmetric bi-heteroaryl systems compared with traditional synthesis. Metal-free reactions and transition-metal catalyzed homocoupling reactions are discussed with reaction mechanisms in detail.

More Details

Light Hydrocarbon Separations Using Porous Organic Framework Materials

Chemistry - A European Journal

Taylor, Mercedes T.; Jiang, Lingchang; Zhang, Shuhao; Ren, Hao; Zhu, Guangshan

Light hydrocarbons (C1–C3) are used as basic energy feedstocks and as commodity organic compounds for the production of many industrially necessary chemicals. Due to the nature of the raw materials and production processes, light hydrocarbons are generated as mixtures, but the high-purity single-component products are of vital importance to the petrochemical industry. Consequently, the separation of these C1–C3 products is a crucial industrial procedure that comprises a significant share of the total global energy consumption per year. As a complement to traditional separation methods (distillation, partial hydrogenation, etc.), adsorptive separations using porous solids have received widespread attention due to their lower energy costs and higher efficiency. Extensive research has been devoted to the use of porous materials such as zeolites and metal-organic frameworks (MOFs) as solid adsorbents for these key separations, owing to the high porosity, tunable pore structures, and unsaturated metal sites present in these materials. Recently, porous organic framework (POF) materials composed of organic building blocks linked by covalent bonds have also shown excellent properties in light hydrocarbon adsorption and separation, sparking interest in the use of these materials as adsorbents in separation processes. This Minireview summarizes the recent advances in the use of POFs for light hydrocarbon separations, including the separation of mixtures of methane/ethane, methane/propane, ethylene/ethane, acetylene/ethylene, and propylene/propane, while highlighting the relationships between the structural features of these materials and their separation performances. Finally, the difficulties, challenges, and opportunities associated with leveraging POFs for light hydrocarbon separations are discussed to conclude the review.

More Details
3 Results
3 Results