Publications

1 Result

Search results

Jump to search filters

Distributed Asynchronous Contact Mechanics with DARMA/vt

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Morales, Nicolas; Jones, Reese E.; Lifflander, Jonathan J.; Pebay, Philippe P.; Mcgovern, Sean T.; Skrzynski, Cezary; Schilly, Caleb

Contact mechanics, or the modeling of the impenetrability of solid objects, is fundamental to computational solid mechanics (CSM) applications yet is oftentimes the most challenging in terms of computational efficiency and performance. These challenges arise from the irregularity and highly dynamic nature of contact simulation, particularly with algorithms designed for distributed memory architectures. First among these challenges is the inherent load imbalance when distributing contact load across compute nodes. This imbalance is highly problem dependent, and relates to the surface area of contact manifolds and the volume around them, rather than the distribution of the mesh over compute nodes, meaning the application load can vary drastically over different phases. The dynamic nature of contact problems motivates the use of distributed asynchronous many-tasking (AMT) frameworks to efficiently handle irregular workloads. In this paper, we present our work on distBVH, a distributed contact solution using the DARMA/vt library for asynchronous tasking that is also capable of running on-node Kokkos-based kernels. We explore how distBVH addresses the various challenges of CSM contact problems. We evaluate the use of many of DARMA/vt’s dynamic load balancers and demonstrate how our load balancing approach can provide significant performance improvements on various computational solid mechanics benchmarks. Additionally, we show how our approach can take advantage of DARMA/vt for tasking and efficient on-node kernels using Kokkos to scale over hundreds of processing elements.

More Details
1 Result
1 Result