Publications Details

Publications / Conference

Understanding the environment on the surface of spent nuclear fuel interim storage containers

Bryan, Charles R.; Enos, David E.

A primary concern with dry storage of spent nuclear fuel is chloride-induced stress corrosion cracking, caused by deliquescence of salts deposited on the stainless steel canisters. However, limited access through the ventilated overpacks and high surface radiation fields impede direct examination of cask surfaces for CISCC, or sampling of surface deposits. Predictive models for CISCC must be able to predict the occurrence of a corrosive chemical environment (a chloride-rich brine formed by dust deliquescence) at specific locations (e.g. weld zones) on the canister surface. The presence of a deliquescent brine is controlled by the relative humidity (RH), which is a function of absolute humidity and cask surface temperature. This requires a thermal model that includes the canister and overpack design, canister-specific waste heat load, and passive cooling by ventilation. Brine compositions vary with initially-deposited salt assemblage, reactions with atmospheric gases, temperature, and the relative rates of salt deposition and reaction; predicting brine composition requires site-specific compositional data for atmospheric aerosols and acid gases. Aerosol particle transport through the overpack and deposition onto the canister must also be assessed. Initial field data show complex variability in the amount and composition of deposited salts as a function of canister surface location.