Publications Details

Publications / Presentation

Uncertainty quantification for multiscale thermal transport simulations

Phinney, Leslie M.; Erikson, William W.; Lechman, Jeremy B.

Two of the more recent developments in thermal transport simulations are the incorporation of multiscale models and requirements for verification, validation, and uncertainty quantification to provide actionable simulation results. The aleatoric uncertainty is investigated for a two component mixture containing a high thermal conductivity and a low thermal conductivity material. The microstructure is varied from a coarse size of 1/8 the domain length to a fine scale of 1/256 the domain length and for volume fractions of high thermal conductivity material from 0 to 1. The uncertainty in the temperatures is greatest near the percolation threshold of around 0.4 and for the coarsest microstructures. Statistical representations of the aleatoric uncertainty for heterogeneous materials are necessary and need to be passed between scales in multiscale simulations of thermal transport.