Publications Details

Publications / Conference

Treatment of liquid nuclear wastes with advanced forms of titanate ion exchangers

Dosch, R.G.; Borwn, N.E.; Stephens, H.P.; Anthony, R.G.

A new class of inorganic ion exchange materials that can separate low parts per million level concentrations of Cs{sup +} from molar concentrations of Na{sup +} has recently been developed as a result of a collaborative effort between Sandia National Laboratories and Texas A&M University. The materials, called crystalline silicotitanates, show significant potential for application to the treatment of aqueous nuclear waste solutions, especially neutralized defense wastes that contain molar concentrations of Na{sup +} in highly alkaline solutions. In experiments with alkaline solutions that simulate defense waste compositions, the crystalline silicotitanates exhibit distribution coefficients for Cs{sup +} of greater than 2,000 ml/g, and distribution coefficients greater than 10,000 for solutions adjusted to a pH between 1 and 10. Additionally, the crystalline silicotitanates were found to exhibit distribution coefficients for Pu and Sr{sup 2+} of greater than 2,000 and 100,000 respectively. Development of these materials for use in processes to treat defense waste streams is currently being pursued.