Publications Details

Publications / Journal Article

Tracer Tests in a Fractured Dolomite: 2. Controls on Mass-Recovery Rates for a Single-Porosity, Heterogeneous Conceptualization

Altman, Susan J.

A single-well injection-withdrawal (SWIW) test is evaluated as a tool to differentiate between single- and double-porosity conceptualizations of a system. Results from single-porosity simulations incorporating plume drift are also compared to observed data from a recent series of SWIW tests conducted in a fractured dolomite unit, for which a double-porosity conceptualization has been proposed. We evaluate the difficulty of differentiating the response for a double-porosity conceptualization from that for a heterogeneous, single-porosity conceptualization incorporating plume drift. Results of sensitivity studies on multiple, stochastically generated, heterogeneous transmissivity fields indicate that to simulate extremely slow mass-recovery rates for a SWIW test with a single-porosity conceptualization, the following conditions must be present: plume drift, extreme heterogeneities (high {sigma}InT), and an unusual configuration of the high and low transmissivity regions relative to the well location. A compilation of existing data suggests that the high degree of heterogeneity necessary is rare at the SWIW test scale.The observed data from the SWIW tracer tests cannot be matched to numerical simulation results when a single-porosity conceptualization is assumed. A signature of significant drift is less than 100% mass recovery with a zero derivative with respect to time of the late-time normalized cumulative mass curve indicating mass transported outside the capture zone of the withdrawal well. To minimize the risk of misinterpretation, an important design feature for SWIW tests is the collection of late-time data so that percent total mass recovery can be calculated.