Publications Details

Publications / Journal Article

The Inside-Outs of Metal Hydride Dehydrogenation: Imaging the Phase Evolution of the Li-N-H Hydrogen Storage System

White, James L.; Baker, Alexander A.; Marcus, Matthew A.; Snider, Jonathan S.; Wang, Timothy C.; Lee, Jonathan R.I.; Kilcoyne, David A.L.; Allendorf, Mark D.; Stavila, Vitalie S.; El Gabaly Marquez, Farid E.

Complex metal hydrides provide high-density hydrogen storage, which is essential for vehicular applications. However, the practical application of these materials is limited by thermodynamic and kinetic barriers present during the dehydrogenation and rehydrogenation processes as new phases form inside parent phases. An improved understanding of the mixed-phase mesostructures and their interfaces will assist in improving cyclability. In this work, the phase evolution during hydrogenation of lithium nitride and dehydrogenation of lithium amide with lithium hydride is probed with scanning transmission X-ray microscopy at the nitrogen K edge. With this technique, core–shell structures are observed in particles of both partially hydrogenated Li3N and partially dehydrogenated LiNH2 + 2LiH. To generate these structures, the rate-limiting step must shift from internal hydrogen diffusion during hydrogenation to the formation of hydrogen gas at the surface during desorption.