Publications Details

Publications / SAND Report

SPND Sensitivity Calculations Using MCNP and Experimental Data from ACRR

King, Joseph K.; Miller, Aaron M.; Parma, Edward J.

The use of the Monte Carlo N-Particle Transport Code (MCNP) to calculate detector sensitivity for Self-Powered Neutron Detectors (SPNDs) in the Annular Core Research Reactor (ACRR) could be a vital tool in the effort to optimize the design of next-generation SPNDs. Next-generation SPND designs, which consider specific materials and geometry, may provide experimenters with capabilities for advanced mixed field dosimetry. These detectors will need to be optimized for configuration, materials, and geometries and the ability to model and iterate must be available in order to decide on the ideal. SPND design. SPNDs were modeled in MCNP which closely resembled the dimensions and location of actual detectors used in the ACRR. Tallies were used to calculate detector sensitivity. Using metrics from a previous report, oscilloscope data from pulses were manipulated in a Matrix Laboratory computing environment (MATLAB) script to calculate experimental detector sensitivity. This report outlines the process in which experimental data from ACRR pulses verified results from tallies in an MCNP ACRR model. The sensitivity values from experiments and MCNP calculations agreed within one standard deviation. Parametric studies were also performed with MCNP to investigate the effects of materials and dimensions of different SPNDs.