Publications Details

Publications / Conference Paper

Sizing Energy Storage Systems to Mitigate Variability of Renewable Generation for Grid Stability using Inverse Uncertainty Propagation

Choi, Hyungjin C.; Elliott, Ryan T.

With increasing penetration of variable renewable generation, battery energy storage systems (BESS) are becoming important for power system stability due to their operational flexibility. In this paper, we propose a method for determining the minimum BESS rated power that guarantees security constraints in a grid subject to disturbances induced by variable renewable generation. The proposed framework leverages sensitivity-based inverse uncertainty propagation where the dynamical responses of the states are parameterized with respect to random variables. Using this approach, the original nonlinear optimization problem for finding the security-constrained uncertainty interval may be formulated as a quadratically-constrained linear program. The resulting estimated uncertainty interval is utilized to find the BESS rated power required to satisfy grid stability constraints.