Publications Details
Single Channel Infrasound Detection Using Machine Learning
Infrasound, low frequency sound less than 20 Hz, is generated by both natural and anthropogenic sources. Infrasound sensors measure pressure fluctuations only in the vertical plane and are single channel. However, the most robust infrasound signal detection methods rely on stations with multiple sensors (arrays), despite the fact that these are sparse. Automated methods developed for seismic data, such as short-term average to long-term average ratio (STA/LTA), often have a high false alarm rate when applied to infrasound data. Leveraging single channel infrasound stations has the potential to decrease signal detection limits, though this cannot be done without a reliable detection method. Therefore, this report presents initial results using (1) a convolutional neural network (CNN) to detect infrasound signals and (2) unsupervised learning to gain insight into source type.