Publications Details
Silicon nitride formation from a silane-nitrogen ECR (electron cyclotron resonance) plasma
Good quality, low temperature silicon nitride and oxynitride films were deposited downstream from an electron cyclotron resonance (ECR) plasma source using SiH{sub 4} and N{sub 2} gas mixtures. The Si/N ratio and H content in the deposited films were determined using Rutherford backscattering spectrometry (RBS)and elastic recoil detection (ERD). The H concentration was minimum for films with compositions closest to that of stoichiometric Si{sub 3}N{sub 4}. The optimum conditions for producing a stoichiometric Si{sub 3}N{sub 4}were: a SiH{sub 4}/N{sub 2} flow ratio between 0.1 and 0.2, and an electrically isolated sample far from the ECR source. Infrared absorption spectra showed that as the film composition changed from N rich to Si rich the dominant bonds associated with H changed from N-H to Si-H. The addition of O{sub 2} to the background gas formed an oxynitride with a low H content similar to the stoichiometric Si{sub 3}N{sub 4} 10 refs., 4 figs., 2 tabs.