Publications Details

Publications / Conference

Shock wave codes at Sandia National Laboratories [Book Chapter]

Mcglaun, M.

Sandia National Laboratories is very active in developing multi-dimensional, multi-material shock wave physics codes. One example is the state-of-the-art, three-dimensional Eulerian code CTH which is used at numerous government and university sites. CTH is being ported to both Single Instruction Multiple Data (SIMD) and Multiple Instruction Multiple Data (MIMD) massively parallel computers. The next-generation arbitrary-Lagrangian-Eulerian code RHALE is under development. This paper will discuss these codes. CTH is an Eulerian code for modelling multi-dimensional, multi-material, large deformation, strong shock physics. Finite-volume numerical schemes are used with one-dimensional, two-dimensional and three-dimensional meshes. CTH has models for elastic-plastic materials, porous materials, high explosive detonation, fracture, and energy deposition. Several analytic equations of state are available including ideal gasses, Jones-Wilkins-Lee high explosive reaction products, Mie-Griineisen solids, and sophisticated multi-phase models that are valid for a very broad range of densities and temperatures. Tabular equations of state are also available. Second-order accurate advection schemes are used to minimize the dispersion found in Eulerian codes. Very large three-dimensional calculations may be run efficiently on a CRAY supercomputer because the code is highly vectorized and the data bases reside on the Solid State Disk (SSD). Data bases larger than one hundred million words are commonly used. Sophisticated color post-processing software was developed to aid in interpreting the results. Much of CTH has been ported to both SIMD and MIMD massively parallel computers. The two-dimensional version is running three times faster than a single CPU CRAY/YMP on the 16k node SIMD Connection Machine and five times faster on the 1024 node nCUBE2 MIMD computer. Both of the massively parallel computers can be expanded by a factor of four to eight yielding a system an order of magnitude faster than a CRAY. The next-generation, three-dimensional arbitrary-Lagrangian-Eulerian code RHALE is under development. Finite element techniques are used to integrate the physics through time. The mesh will move with the material (Lagrangian mesh) until the distortion becomes excessive and then the nodes are automatically repositioned to smooth the mesh and improve the accuracy (Eulerian mesh). Node motion occurs only where the distortion is excessive. This results in a code with the best features of both Lagrangian and Eulerian codes. Arbitrary-connectivity meshes are used to generate very complicated and sophisticated meshes. However, this dramatically increases the complexity of the Eulerian algorithms.