Publications Details

Publications / Conference Presenation

Residual minimization formulations for model reduction of steady hypersonic flow

Van Heyningen, R.L.; Ching, David C.; Blonigan, Patrick J.; Parish, Eric J.; Rizzi, Francesco

Computational simulations of high-speed flow play an important role in the design of hypersonic vehicles, for which experimental data are scarce; however, high-fidelity simulations of hypersonic flow are computationally expensive. Reduced order models (ROMs) have the potential to make many-query problems, such as design optimization and uncertainty quantification, tractable for this domain. Residual minimization-based ROMs, which formulate the projection onto a reduced basis as an optimization problem, are one promising candidate for model reduction of large-scale fluid problems. This work analyzes whether specific choices of norms and objective functions can improve the performance of ROMs of hypersonic flow. Specifically, we investigate the use of dimensionally consistent inner products and modifications designed for convective problems, including ℓ1 minimization and constrained optimization statements to enforce conservation laws. Particular attention is paid to accuracy for problems with strong shocks, which are common in hypersonic flow and challenging for projection-based ROMs. We demonstrate that these modifications can improve the predictability and efficiency of a ROM, though the impact of such formulations depends on the quantity of interest and problem considered.