Publications Details
Rapid Fabrication of High Frame Rate Multichannel FTIR Spectrometers
Reneker, Joseph; Wermer, Lydia R.; Kaehr, Bryan J.; Meiser, Daniel; Huntley, Emily; Shields, Eric A.
Spectrally resolved signals in the short- to mid-wave infrared (SWIR/MWIR) bands at high-temporal resolution are critical for many national security remote sensing missions. Currently available off the shelf technology can achieve either high temporal resolution or high spectral resolution, but rugged instruments that can achieve both simultaneously remain mostly in the realm of one-off R&D projects. This report documents efforts to demonstrate a new technique for designing and building high resolution, high framerate multichannel FTIR (MC-FTIR) spectrometers that operate in the SWIR/MWIR bands. The core optical element in a MC-FTIR spectrometer is an array of statically-tuned lamellar grating interferometers (LGI). In the original MC-FTIR work these arrays were fabricated using a synchrotron x-ray lithography method. We proposed to instead fabricate these LGI arrays using multiphoton lithography (MPL), a 3D printing technique that can fabricate meso-scale structures with sub-micron precision. Although we were able to fabricate LGI arrays of sufficient size using MPL, the realized optical surfaces had unsuitably high optical form errors, precluding their use in a fieldable instrument. Further advancement in MPL technology may eventually enable fabrication of interferometer-grade LGI arrays.