Publications Details
Radiation enhanced sublimation of graphite in PISCES experiments
Ion beam studies on radiation enhanced sublimation (RES) have shown that above 800{degree} C energetic ions incident on graphite produce erosion in the form of carbon atoms with thermal energies and that the erosion rate rises roughly exponentially with temperature. Until recently, the question remained whether RES would scale linearly with flux over three to four orders of magnitude to the plasma edge fluxes in CIT and ITER, where the predicted erosion rates would severely limit the designs for plasma-facing components. Also, RES and carbon self-sputtering may also be involved in the carbon blooms'' observed in TFTR and JET. The data reported here from PISCES, a plasma source at UCLA, are the first RES data at fluxes approaching the plasma edge conditions in a large tokamak and they show little reduction from a direct linear dependence upon flux. Erosion rates measured by weight loss are reported for POCO graphite exposed to helium plasmas for a temperature range from 900--2000{degree} C, ion energies of 30--300 eV, ion fluxes of 1--6 {times} 10{sup 18} cm{sup {minus}2} s{sup {minus}1}, densities of 2--10 {times} 10{sup 12} cm{sup {minus}3} and electron temperatures of 4-10 eV. For these conditions, the amount of redeposition and carbon self-sputtering was minimal. Over 1700{degree} C, there is evidence of electron emission from the sample. 26 refs., 4 figs., 1 tabs.