Publications Details
Pressure-Induced Transformation of Nb2O5 Under Shock Compression from First Principles
Weck, Philippe F.; Moore, Nathan W.
Ab initio molecular dynamics (AIMD) simulations were carried out to investigate the equation of state of Nb2O5 and its pressure-density relationship under shock conditions. The focus of this study is on the monoclinic B−Nb2O5 (C2/c) polymorph. Enthalpy calculations from AIMD trajectories at 300 K show that the pressure-induced transformation between the thermodynamically most stable crystalline monoclinic parent phase H−Nb2O5 (P2/m) and B−Nb2O5 occurs at ∼1.9 GPa. This H→B transition is energetically more favorable than the H→L(Pmm2) pressure-induced transition recently observed at ∼5.9−9.0 GPa. The predicted shock properties of Nb2O5 polymorphs are also compared to their Nb and NbO2 counterparts to assess the impact of niobium oxidation on shock response.