Publications Details
Preparation and evaluation of composite membranes for zinc/bromine storage batteries
Arnold Jr., C.; Assink, R.A.
Low coulombic efficiencies of zinc/bromine redox batteries have been attributed to migration of bromine and negatively charged bromine moieties through the microporous separator used to separate the catholyte from the anolyte. While it has been demonstrated that improvements in coulombic efficiency can be achieved by replacing the microporous separator with a cationic ion exchange membrane, these membranes are expensive and/or not sufficiently conductive to be practicable. We have found that the rate of bromine permeation can be reduced by two orders of magnitude with minimal decreases in conductivity by impregnating commercial microporous polyethylene type separators with sulfonated polysulfone, a cationic polyelectrolyte that was developed in earlier work for other redox storage batteries. 5 refs., 1 fig., 1 tab.