Publications Details
On the Harmonic Balance Method Augmented with Nonsmooth Basis Functions for Contact/Impact Problems
Saunders, Brian E.; Kuether, Robert J.; Vasconcellos, Rui M.G.; Abdelkefi, Abdessattar
In this work, we evaluate the usefulness of nonsmooth basis functions for representing the periodic response of a nonlinear system subject to contact/impact behavior. As with sine and cosine basis functions for classical Fourier series, which have Cā smoothness, nonsmooth counterparts with C0 smoothness are defined to develop a nonsmooth functional representation of the solution. Some properties of these basis functions are outlined, such as periodicity, derivatives, and orthogonality, which are useful for functional series applied via the Galerkin method. Least-squares fits of the classical Fourier series and nonsmooth basis functions are presented and compared using goodness-of-fit metrics for time histories from vibro-impact systems with varying contact stiffnesses. This formulation has the potential to significantly reduce the computational cost of harmonic balance solvers for nonsmooth dynamical systems. Rather than requiring many harmonics to capture a system response using classical, smooth Fourier terms, the frequency domain discretization could be captured by a combination of a finite Fourier series supplemented with nonsmooth basis functions to improve convergence of the solution for contact-impact problems.