Publications Details
On the Development of a Gridless Inflation Code for Parachute Simulations
Strickland, James H.; Homicz, Gregory F.; Gossler, A.A.; Wolfe, Walter P.; Porter, V.L.
In this paper the authors present the current status of an unsteady 3D parachute simulation code which is being developed at Sandia National Laboratories under the Department of Energy's Accelerated Strategic Computing Initiative (ASCI). The Vortex Inflation PARachute code (VIPAR) which embodies this effort will eventually be able to perform complete numerical simulations of ribbon parachute deployment, inflation, and steady descent. At the present time they have a working serial version of the uncoupled fluids code which can simulate unsteady 3D incompressible flows around bluff bodies made up of triangular membrane elements. A parallel version of the code has just been completed which will allow one to compute flows over complex geometries utilizing several thousand processors on one of the new DOE teraFLOP computers.