Publications Details

Publications / Report

NET-1.2 post-irradiation examination report

Rightley, Michael J.

The post-irradiation examination (PIE) of the NET-1.2 fuel element was completed in December, 1993. The goal of the PIE work was to gather data regarding the fracture of the hot frit during the experiment. Five cracks were observed in the hot frit at various locations although only two were believed to have initiated the overall component failure. These two cracks were complete circumferential failures and were located near the open and closed ends of the frit within the active flow region. The location and orientation of these fractures suggested that failure was the result of thermally-induced stresses that exceeded pre-test predictions. The cause of the failure was the temperature difference between the coolant flowing through the hot frit and the thermally massive end fittings. The resulting axial temperature gradients in the hot frit imposed thermal stresses that exceeded failure in the frit coating material. This coating fracture then propagated through the graphite substrate. Post-test analyses of the frit response based on measured data from the experiment verified that the frit coating failure stresses were exceeded. Additionally, the cold frit behaved unexpectedly. The PIE inspection of this component showed that a majority of the compliant panels were permanently deformed against the cold frit inner wall even though the transients that the bed was exposed to were not thought to be capable of creating this magnitude of bed expansion. No evidence of bed locking was observed. A calculational error in the prediction of the total bed expansion was found (post-PIE) which certainly contributed to the underestimation of the bed displacement. Additionally, temperature differences between the bulk of the frit and the panels created a bowing force which may have allowed some amount of bed settling at relatively low temperatures while particle thermal expansion was minimal.