Publications Details
Monolayer-Mediated Patterning of Electroceramic Thin Films
Integrated electroceramic thin film devices on semiconductor and insulator substrates feature a variety of attractive attributes, including high capacitance density, nonvolatile memory, sensor/actuator ability, and other unique electronic and optical properties. The ability to pattern such ceramic materials atop semiconductor substrates, thus, is a critical technology. Patterned oxide thin film devices are typically formed by uniform film deposition followed by somewhat complicated post-deposition ion-beam or chemical etching in a controlled environment. We review here the development of an ambient atmosphere technique which allows selective deposition of electroceramic thin layers without such post-deposition etching. In this method, substrate surfaces are selectively functionalized with hydrophobic self-assembled monolayer to modify the adhesion of subsequently deposited solution-derived electroceramics. The selective fictionalization is achieved through microcontact printing (v-CP) of self-assembled monolayer of the chemical octadecyltrichlorosilane on substrates of technical interest. Subsequent sol-gel deposition of ceramic oxides on these functionalized substrates, followed by lift-off from the monolayer, yields high quality, patterned oxide thin layers only on the unfunctionalized regions. A variety of micron- scale dielectric oxide devices have been fabricated using this process, with lateral resolution as fine as 0.5Lm. In this paper, we review the monolayer patterning and electrical behavior of several patterned electroceramic thin films, including Pb(Zr,Ti)03 [PZT], LiNb03, and Ta205. An applied device example is also presented in combination with selective MOCVD deposition of metal electrodes: integrated, fully monolayer-patterned Pt//PZT//PSi(Si(100) ferroelectric memory cells.