Publications Details

Publications / Conference

Modeling solute redistribution and microstructural development in fusion welds of multi-component alloys

Robino, Charles V.

Solute redistribution and microstructural evolution have been modeled for gas tungsten arc fusion welds in experimental Ni base superalloys. The multi-component alloys were modeled as a pseudo-ternary {gamma}-Nb-C system. The variation in fraction liquid and liquid composition during the primary L {r{underscore}arrow} {gamma} and eutectic type L {r{underscore}arrow} ({gamma} + NbC) stages of solidification were calculated for conditions of negligible Nb diffusion and infinitely rapid C diffusion in the solid phase. Input parameters were estimated by using the Thermo-Calc NiFe Alloy data base and compared to experimentally determined solidification parameters. The solidification model results provide useful information for qualitatively interpreting the influence of alloy composition on weld microstructure. The quantitative comparisons indicate that, for the alloy system evaluated, the thermodynamic database provides sufficiently accurate values for the distribution coefficients of Nb and C. The calculated position of the {gamma}-NbC two-fold saturation line produces inaccurate results when used as inputs for the model, indicating further refinement to the database is needed for quantitative estimates.