Publications Details
Modeling a ring magnet in ALEGRA
Niederhaus, John H.; Pacheco, Jose L.; Wilkes, John; Hooper, Russell H.; Siefert, Christopher S.; Goeke, Ronald S.
We show here that Sandia's ALEGRA software can be used to model a permanent magnet in 2D and 3D, with accuracy matching that of the open-source commercial software FEMM. This is done by conducting simulations and experimental measurements for a commercial-grade N42 neodymium alloy ring magnet with a measured magnetic field strength of approximately 0.4 T in its immediate vicinity. Transient simulations using ALEGRA and static simulations using FEMM are conducted. Comparisons are made between simulations and measurements, and amongst the simulations, for sample locations in the steady-state magnetic field. The comparisons show that all models capture the data to within 7%. The FEMM and ALEGRA results agree to within approximately 2%. The most accurate solutions in ALEGRA are obtained using quadrilateral or hexahedral elements. In the case where iron shielding disks are included in the magnetized space, ALEGRA simulations are considerably more expensive because of the increased magnetic diffusion time, but FEMM and ALEGRA results are still in agreement. The magnetic field data are portable to other software interfaces using the Exodus file format.