Publications Details
Microscopic study of local structure and charge distribution in metallic La{sub 2}CuO{sub 4+{delta}}
The authors employ NMR and NQR spectroscopy as probes of local structure and charge environments in metallic La{sub 2}CuO{sub 4+{delta}} ({Tc} = 38 K). They discuss the effect of annealing the sample at various temperatures T{sub a} ({Tc} < T{sub a} < 300K) on the superconducting {Tc}. The dependence of {Tc} on annealing indicates that annealing allows the development of structural order which is important for {Tc}. The {sup 139}La quadrupole frequency, {nu}{sub Q} is smaller than in undoped materials. This is unexpected and may indicate a smaller charge on the apex oxygen in the doped material and thus a different distribution of charge between the La-O layer to the planes. The further, rapid decrease in {nu}{sub Q} just above {Tc} indicates that temperature dependent charge redistribution is occurring. The presence of doped holes induces a distribution of displacements of the apex oxygen off of the vertical La-Cu bond axis. These vary from zero to the value observed in lightly doped (antiferromagnetic) La{sub 2}CuO{sub 4+{delta}}. These measurements demonstrate a striking degree of inhomogeneity in the crystal structure of the La-O layer. Copper NQR spectroscopy shows that there are two distinct copper sites in the CuO{sub 2} planes and thus that either the structure or the charge distribution in the planes is inhomogeneous as well. These inhomogeneities are the intrinsic response of the crystal to doped holes; they are not the result of distortions of the lattice due to the presence of interstitial oxygen atoms.