Publications Details
Measurement of Particulate Retention in Microchannel Flows
Durbin, S.G.; Lindgren, Eric R.; Pulido, Ramon P.
The purpose of this study was to explore the flow rates and aerosol retention of an engineered microchannel with characteristic dimensions similar to those of stress corrosion cracks (SCCs) that could form in dry cask storage systems (DCSS) for spent nuclear fuel. Additionally, pressure differentials covering the upper limit of commercially available DCSS were studied. Given the scope and resources available, these data sets should be considered preliminary and are intended to demonstrate a new capability to characterize SCC under well-controlled boundary conditions. The gap of the microchannel tested was 28.9 gm (0.00110 in.), the width was 12.7 mm (0.500 in.), and the length was 8.86 mm (0.349 in.). Over a nine-hour period, the average mass concentration upstream of the microchannel was 0.048 mg/m3 while the average concentration downstream was 0.030 mg/m3. By the end of the test, the mass of aerosols that entered the test section upstream of the microchannel was 0.207 mg and the mass of aerosols that exited the microchannel was 0.117 mg. Therefore, 44% of the aerosols available for transmission was retained upstream of microchannel.