Publications Details
Magnetic Semiconductor Quantum Wells in High Fields to 60 Tesla: Photoluminescence Linewidth Annealing at Magnetization Steps
Magnetic semiconductors offer a unique possibility for strongly tuning the intrinsic alloy disorder potential with applied magnetic field. We report the direct observation of a series of step-like reductions in the magnetic alloy disorder potential in single ZnSe/Zn(Cd,Mn)Se quantum wells between O and 60 Tesla. This disorder, measured through the linewidth of low temperature photoluminescence spectra drops abruptly at -19, 36, and 53 Tesla, in concert with observed magnetization steps. Conventional models of alloy disorder (developed for nonmagnetic semiconductors) reproduce the general shape of the data, but markedly underestimate the size of the linewidth reduction.