Publications Details

Publications / Conference Presenation

Laser-Based Characterization of Reflected Shock Tunnel Freestream Velocity and Multi-Species Thermal Nonequilibrium with Comparison to Modeling

Jans, Elijah R.; Lynch, Kyle P.; Wagnild, Ross M.; Swain, William E.; Downing, Charley R.; Kearney, Sean P.; Wagner, Justin L.; Gilvey, Jonathan J.; Goldenstein, Christopher S.

Coherent anti-Stokes Raman scattering (CARS) and nitric oxide molecular tagging velocimetry (NO-MTV) are used to characterize the freestream in Sandia’s Hypersonic Shock Tunnel (HST) using a burst-mode laser operated at 100-kHz. Experiments are performed at nominal freestream velocities of 3 and 4 km/s using both air and N2 test gas. The CARS diagnostic provides nonequilibrium characterization of the flow by measuring vibrational and rotational temperatures of N2 and O2, which are compared to NO temperatures from separate laser absorption experiments. Simultaneous, colinear freestream velocities are measured using NO MTV along with pitot pressures. This extensive freestream dataset is compared to nonequilibrium CFD capable of modeling species-specific, vibrational temperatures throughout the nozzle expansion. Significant nonequilibrium between vibrational and rotational temperatures are measured at each flow condition. N2 exhibits the most nonequilibrium followed by O2 and NO. The CFD model captures this trend, although it consistently overpredicts N2 vibrational temperatures. The modeled temperatures agree with the O2 data. At 3 km/s, the modeled NO nonequilibrium is underpredicted, whereas it is overpredicted at 4 km/s. Good agreement is seen between CFD and the velocity and rotational temperature measurements. Experiments with water added to the test gas yielded no discernable difference in vibrational relaxation.