Publications Details

Publications / Conference

Investigation of plessite in iron meterorites and laboratory Fe-Ni(P) alloys

Goldstein, Joseph I.

Plessite in iron meteorites is a two phase structure with an fcc precipitate phase in a bcc matrix. After Fe-Ni martensite forms during slow cooling, the martensite decomposition occurs at different temperatures. The morphology of the precipitates and the Ni content of both precipitate and matrix vary with the local average Ni composition of the plessite. In this study, the plessite structure of two octahedrites, Carlton and Grant, was characterized using the analytical electron microscope (AEM). The composition of the taenite precipitates in various regions of plessite which have 9 to 13 wt% and 15 to 20 wt% Ni composition were measured using an x-ray energy dispersive spectrometer (EDS) in the AEM. To understand the phase transformation processes which occurred during the plessite formation, an experimental set of Fe-Ni binary and Fe-Ni-P ternary alloys were made and analyzed also using the AEM. The alloys, which have 15 to 30 wt% Ni (0.2-0.3 wt% P for ternary alloys), were first homogenized at 1,200{degree}C and quenched to liquid nitrogen temperature to form martensite. They were then isothermally heat treated for 60 to 400 days in the temperature range from 450{degree}C to 300{degree}C. Two phase structures, which are similar to those of plessite, were formed in these alloys. The Fe-Ni phase equilibria measured in the decomposed martensite alloys can be used to explain the difference in Ni composition between precipitates in the high Ni and low Ni plessite regions. 3 refs., 2 figs.