Publications Details
Influence of misfit mechanisms on jointed structure response
Resor, Brian R.; Starr, Michael J.
Geometric features with characteristic lengths on the order of the size of the contact patch interface may be at least partly responsible for the variability observed in experimental measurements of structural stiffness and energy dissipation per cycle in a bolted joint. Experiments on combinations of two different types of joints (statically determinate single-joint and statically indeterminate three-joint structures) of nominally identical hardware show that the structural stiffness of the tested specimens varies by up to 25% and the energy dissipation varies by up to nearly 300%. A pressure-sensitive film was assembled into the interfaces of jointed structures to gain a qualitative understanding of the distribution of interfacial pressures of nominally conformal surfaces. The resultant pressure distributions suggest that there are misfit mechanisms that may influence contact patch geometry and also structural response of the interface. These mechanisms include local plateaus and machining induced waviness. The mechanisms are not consistent across nominally machined hardware interfaces. The proposed misfit mechanisms may be partly responsible for the variability in energy dissipation per cycle of joint experiments.