Publications Details

Publications / Conference Proceeding

Improving Multi-Model Trajectory Simulation Estimators using Model Selection and Tuning

Bomarito, Geoffrey F.; Geraci, Gianluca G.; Warner, James E.; Leser, Patrick E.; Leser, William P.; Eldred, Michael S.; Jakeman, John D.; Gorodetsky, Alex A.

Multi-model Monte Carlo methods have been illustrated to be an efficient and accurate alternative to standard Monte Carlo (MC) in the model-based propagation of uncertainty in entry, descent, and landing (EDL) applications. These multi-model MC methods fuse predictions from low-fidelity models with the high-fidelity EDL model of interest to produce unbiased statistics with a fraction of the computational cost. The accuracy and efficiency of the multi-model MC methods are dependent upon the magnitude of correlations of the low-fidelity models with the high-fidelity model, but also upon the correlation amongst the low-fidelity models, and their relative computational cost. Because of this layer of complexity, the question of how to optimally select the set of low-fidelity models has remained open. In this work, methods for optimal model construction and tuning are investigated as a means to increase the speed and precision of trajectory simulation for EDL. Specifically, the focus is on the inclusion of low-fidelity model tuning within the sample allocation optimization that accompanies multi-model MC methods. Results indicate that low-fidelity model tuning can significantly improve efficiency and precision of trajectory simulations and provide an increased edge to multi-model MC methods when compared to standard MC.