Publications Details

Publications / Conference Proceeding

IMPACT OF SAMPLING STRATEGIES IN THE POLYNOMIAL CHAOS SURROGATE CONSTRUCTION FOR MONTE CARLO TRANSPORT APPLICATIONS

Geraci, Gianluca G.; Olson, Aaron J.

The accurate construction of a surrogate model is an effective and efficient strategy for performing Uncertainty Quantification (UQ) analyses of expensive and complex engineering systems. Surrogate models are especially powerful whenever the UQ analysis requires the computation of statistics which are difficult and prohibitively expensive to obtain via a direct sampling of the model, e.g. high-order moments and probability density functions. In this paper, we discuss the construction of a polynomial chaos expansion (PCE) surrogate model for radiation transport problems for which quantities of interest are obtained via Monte Carlo simulations. In this context, it is imperative to account for the statistical variability of the simulator as well as the variability associated with the uncertain parameter inputs. More formally, in this paper we focus on understanding the impact of the Monte Carlo transport variability on the recovery of the PCE coefficients. We are able to identify the contribution of both the number of uncertain parameter samples and the number of particle histories simulated per sample in the PCE coefficient recovery. Our theoretical results indicate an accuracy improvement when using few Monte Carlo histories per random sample with respect to configurations with an equivalent computational cost. These theoretical results are numerically illustrated for a simple synthetic example and two configurations of a one-dimensional radiation transport problem in which a slab is represented by means of materials with uncertain cross sections.