Publications Details
High-voltage pulse testing of DSSL (detonator strong safety link) actuator drive cables
A series of test has evaluated the current-carrying characteristics of several proposed detonator strong safety link (DSSL) drive cables to conduct current into an electrically simulated radiation case enclosure. The drive cables tested included a dielectric cable made up of either one or two braided Kevlar threads in a polysulfone sleeve, an existing DSSL conductive drive cable similar to a bicycle shift cable, with and without an external ground-strap diversion feature, and the flex circuit hook assembly used for DSSL instrumentation purposes. Each of the test samples was connected to a 200-kV, 30-kA Marx generator and terminated inside an electrically simulated radiation case enclosure. Two lengths of drive cables (4 and 13 in.) within the simulated radiation case were tested for each type. The results indicate that the conductive drive cables without an external short-circuit diversion feature conducted about 5 to 9 times as much current into the simulated radiation case as either the dielectric drive cables or the conductive drive cables with an external short-circuit feature. Surprisingly, the flex circuit hook assemblies, both the short and long cables, conducted nearly 100% of the available current into the simulated radiation case enclosure. The next series of experiments will repeat the tests at the SNL Lightning Facility in order to scale the results up to the maximum lightning threat levels of 200 kA. 18 figs., 1 tab.