Publications Details

Publications / Conference Poster

GMLS-NEts: A machine learning framework for unstructured data

Trask, Nathaniel A.; Patel, Ravi G.; Gross, Ben J.; Atzberger, Paul J.

Data fields sampled on irregularly spaced points arise in many science and engineering applications. For regular grids, Convolutional Neural Networks (CNNs) gain benefits from weight sharing and invariances. We generalize CNNs by introducing methods for data on unstructured point clouds using Generalized Moving Least Squares (GMLS). GMLS is a nonparametric meshfree technique for estimating linear bounded functionals from scattered data, and has emerged as an effective technique for solving partial differential equations (PDEs). By parameterizing the GMLS estimator, we obtain learning methods for linear and non-linear operators with unstructured stencils. The requisite calculations are local, embarrassingly parallelizable, and supported by a rigorous approximation theory. We show how the framework may be used for unstructured physical data sets to perform operator regression, develop predictive dynamical models, and obtain feature extractors for engineering quantities of interest. The results show the promise of these architectures as foundations for data-driven model development in scientific machine learning applications.