Publications Details

Publications / Conference

Giant effective mass deviations near the magnetic field-induced minigap in double quantum wells

Harff, N.E.

The authors report major deviations in the electron effective mass m* near the partial energy gap, or minigap, formed in strongly coupled double quantum wells (QWs) by an anticrossing of the two QW dispersion curves. The anticrossing and minigap are induced by an in-plane magnetic field B{sub {parallel}} and give rise to large distortions in the Fermi surface and density of states, including a Van Hove singularity. Sweeping B{sub {parallel}} moves the minigap through the Fermi level, with the upper and lower gap edges producing a sharp maximum and minimum in the low-temperature in-plane conductance, in agreement with theoretical calculations. The temperature dependence of Shubnikov-de Haas (SdH) oscillations appearing in a tilted magnetic field yield a decreased m* {le} 1/3 m*{sub GaAs} near the upper gap edge, and indicate an increase in m* near the lower gap edge.