Publications Details

Publications / Report

Finite element analysis of sucker rod couplings with guidelines for improving fatigue life

Hoffman, Edward L.

The response of a variety of sucker rod couplings to an applied axial load was simulated using axisymmetric finite element models. The calculations investigated three sucker rod sizes and various combinations of the slimhole, Spiralock, and Flexbar modifications to the coupling. In addition, the effect of various make-ups (assembly tightness) on the performance of coupling was investigated. An axial load was applied to the sucker rod ranging from {minus}5 ksi to 40 ksi, encompassing three load cycles identified on a modified Goodman diagram as acceptable for indefinite service life of the sucker rods. The simulations of the various coupling geometries and make-ups were evaluated with respect to how well they accomplish the two primary objectives of preloading threaded couplings: (1) to lock the threaded coupling together so that it will not loosen and eventually uncouple, and (2) to improve the fatigue resistance of the threaded connection by reducing the stress amplitude in the coupling when subjected to cyclic loading. Perhaps the most significant finding in this study was the characterization of the coupling parameters which affect two stress measures. The mean hydrostatic stress, which determines the permissible effective alternating stress, is a function of the coupling make-up. Whereas, the alternating effective stress is a function of the relative stiffnesses of the pin and box sections of the coupling and, as long as the coupling does not separate, is unaffected by the amount of circumferential displacement applied during make-up. The results of this study suggest approaches for improving the fatigue resistance of sucker rod couplings.