Publications Details
Exergy and irreversible entropy production thermodynamic concepts for control system design: Regulators
Robinett, Rush D.; Wilson, David G.
This paper develops a novel control system design methodology that uniquely combines: concepts from thermodynamic exergy and entropy; Hamiltonian systems; Lyapunov's direct method and Lyapunov optimal analysis; electric AC power concepts; and power flow analysis. Relationships are derived between exergy/entropy and Lyapunov optimal functions for Hamiltonian systems. The methodology is demonstrated with a couple of fundamental numerical simulation examples: 1) a PID regulator control for a linear mass-spring-damper system and 2) a Duffing oscillator/Coulomb friction nonlinear model that employs PID regulator control. The control system performances are partitioned and evaluated based on exergy generation and exergy dissipation terms. This novel nonlinear control methodology results in both necessary and sufficient conditions for stability of nonlinear systems. © 2006 IEEE.