Publications Details

Publications / Other Report

Engineered living materials for capture, conversion, and recycling technologies

Bachand, George B.; Rempe, Susan R.; Manginell, Monica M.; Coker, Eric N.; Chiang, Rong-An; Sharma, Arjun; Nardi, Isaac

Continued dependence on crude oil and natural gas resources for fossil fuels has caused global atmospheric carbon dioxide (CO2) emissions to increase to record-setting proportions. There is an urgent need for efficient and inexpensive carbon sequestration systems to mitigate large-scale CO2 emissions from industrial flue gas. Carbonic anhydrase (CA) has shown high potential for enhanced CO2 capture applications compared to conventional absorption-based methods currently utilized in various industrial settings. This study aims to understand structural aspects that contribute to the stability of CA enzymes critical for their applications in industrial processes, which require the ability to withstand conditions different from their native environments. Here, we evaluated the thermostability and enzyme activity of mesophilic and thermophilic CA variants at different temperature conditions and in the presence of atmospheric gas pollutants like nitrogen oxides (NOx) and sulphur oxides (SOx). Based on our enzyme activity assays and molecular dynamics simulations, we see increased conformational stability and CA activity levels in thermostable CA variants incubated week-long at different temperature conditions. The thermostable CA variants also retained high levels of CA activity despite changes in solution pH due to increasing NOx and SOx concentrations. Furthermore, a loss of CA activity was observed only at high concentrations of NOx/SOx that possibly can be minimized with appropriate buffered solutions.